ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous  (1)
  • Cybernetics, Artificial Intelligence and Robotics  (1)
  • Earth Resources and Remote Sensing  (1)
  • 2010-2014  (3)
  • 1
    Publikationsdatum: 2021-11-29
    Beschreibung: The 8th International Comparison of Absolute Gravimeters (ICAG2009) took place at the headquarters of the International Bureau of Weights and Measures (BIPM) from September to October 2009. It was the first ICAG organized as a key comparison in the framework of the CIPM Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA) (CIPM 1999). ICAG2009 was composed of a Key Comparison (KC) as defined by the CIPM MRA, organized by the Consultative Committee for Mass and Related Quantities (CCM) and designated as CCM.G-K1. Participating gravimeters and their operators came from national metrology institutes (NMIs) or their designated institutes (DIs) as defined by the CIPM MRA. A Pilot Study (PS) was run in parallel in order to include gravimeters and their operators from other institutes which, while not signatories of the CIPM MRA, nevertheless play important roles in international gravimetry measurements. The aim of the CIPM MRA is to have international acceptance of the measurement capabilities of the participating institutes in various fields of metrology. The results of CCM.G-K1 thus constitute an accurate and consistent gravity reference traceable to the SI (International System of Units), which can be used as the global basis for geodetic, geophysical and metrological observations of gravity. The measurements performed afterwards by the KC participants can be referred to the international metrological reference, i.e. they are SI-traceable. The ICAG2009 was complemented by a number of associated measurements: the Relative Gravity Campaign (RGC2009), high-precision levelling and an accurate gravity survey in support of the BIPM watt balance project. The major measurements took place at the BIPM between July and October 2009. Altogether 24 institutes with 22 absolute gravimeters32 and nine relative gravimeters participated in the ICAG/RGC campaign. This paper is focused on the absolute gravity campaign. We review the history of the ICAGs and present the organization, data processing and the final results of the ICAG2009. After almost thirty years of hosting eight successive ICAGs, the CIPM decided to transfer the responsibility for piloting the future ICAGs to NMIs, although maintaining a supervisory role through its Consultative Committee for Mass and Related Quantities.
    Beschreibung: Published
    Beschreibung: 666–684
    Beschreibung: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): absolute gravimetry ; International Comparison ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1].
    Schlagwort(e): Cybernetics, Artificial Intelligence and Robotics
    Materialart: JSC-CN-27845 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as requested by the European Union s Water Framework Directive (WFD), as well as national policies). Geo-information science and EO are vital in achieving a better understanding of the water cycle and better monitoring, analysis, prediction, and management of the world s water resources. The major components of the water cycle of the Earth system and their possible observations are presented. Such observations are essential to understand the global water cycle and its variability, both spatially and temporally, and can only be achieved consistently by means of EOs. Additionally, such observations are essential to advance our understanding of coupling between the terrestrial, atmospheric, and oceanic branches of the water cycle, and how this coupling may influence climate variability and predictability. Water resources management directly interferes with the natural water cycle in the forms of building dams, reservoirs, water transfer systems, and irrigation systems that divert and redistribute part of the water storages and fluxes on land. The water cycle is mainly driven and coupled to the energy cycle in terms of phase changes of water (changes among liquid, water vapor, and solid phases) and transport of water by winds in addition to gravity and diffusion processes. The water-cycle components can be observed with in situ sensors as well as airborne and satellite sensors in terms of radiative quantities. Processing and conversion of these radiative signals are necessary to retrieve the water-cycle components.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: GSFC.BOOK.5769.2011 , Treatise on Water Science; 351-399
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...