ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (1)
  • 3D modeling  (1)
  • L'Aquila earthquake  (1)
  • polyoxadiazoles
  • 2010-2014  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Finite Element methods (FEMs) are a powerful numerical simulation tool for modeling seismic events as they allow to solve three-dimensional complex models. We used a 3D Finite Element approach to evaluate the co-seismic displacement eld produced by the devastating 2004 Sumatra Andaman earthquake, which caused permanent deformations recorded by continuously operating GPS networks in a region of unprecedented extent. Previous analysis of the static displacement fi eld focused on the heterogeneous distribution of moment release on the fault plane; our intention here is to investigate how much the presence of crustal heterogeneities trades off seismic source details. To this aim, we adopted a quite simple source model in modeling the event. The key feature of our analysis is the generation of a complex three dimensional spherical domain. More-over, we also made an accurate analysis concerning boundary conditions, which are crucial for FE simulations.
    Description: Submitted
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Finite element method ; 3D modeling ; boundary conditions ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: On 2009 April 6 a Mw = 6.3 earthquake struck the Abruzzi region (Central Italy) and caused severe destruction in L’Aquila and the surrounding area. In this work we present a Finite Element analysis of the event based on a realistic complex 3-D model, accounting for topographic relief and rheological heterogeneities deduced from local tomography. Finite Element computed Green’s functions were implemented in a linear inversion of GPS coseismic displacements, to retrieve the slip distribution on the rupture plane. The inverted slip models basically agree with previous studies carried out on homogeneous domains, but reveal the presence of a single high slip patch, whereas half-space or 1-D approaches obtain a more complex slip pattern. Our results point out that the introduction of 3-D features significantly influences the obtained source model, suggesting a trade-off between domain complexities and source details.
    Description: Published
    Description: 1339–1358
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis ; Seismicity and tectonics ; Dynamics and mechanics of faulting ; L'Aquila earthquake ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Finite-element methods are a powerful numerical simulation tool for modeling seismic events, as they allow three-dimensional complex models to be solved. We used a three-dimensional finite-element approach to evaluate the co-seismic displacement field produced by the devastating 2004 Sumatra–Andaman earthquake, which caused permanent deformations that were recorded by continuously operating GPS networks in a region of unprecedented area. Previous analysis of the static displacement fields have focused on the heterogeneous distribution of moment release on the fault plane; our intention here is to investigate how much the presence of crustal heterogeneities trades-off seismic source details. To achieve this aim, we adopted a quite simple source model in modeling the event. The key feature of our analysis is the generation of a complex three-dimensional spherical domain. Moreover, we also carried out an accurate analysis concerning the boundary conditions, which are crucial for finite-element simulations.
    Description: Published
    Description: 91-103
    Description: JCR Journal
    Description: open
    Keywords: Finite element method ; Sumatra earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...