ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-15
    Description: In the mammalian genome, 5'-CpG-3' dinucleotides are frequently methylated, correlating with transcriptional silencing. Genome-wide demethylation is thought to occur only twice during development, in primordial germ cells and in the pre-implantation embryo. These demethylation events are followed by de novo methylation, setting up a pattern inherited throughout development and modified only at tissue-specific loci. We studied DNA methylation in differentiating mouse erythroblasts in vivo by using genomic-scale reduced representation bisulfite sequencing (RRBS). Demethylation at the erythroid-specific beta-globin locus was coincident with global DNA demethylation at most genomic elements. Global demethylation was continuous throughout differentiation and required rapid DNA replication. Hence, DNA demethylation can occur globally during somatic cell differentiation, providing an experimental model for its study in development and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shearstone, Jeffrey R -- Pop, Ramona -- Bock, Christoph -- Boyle, Patrick -- Meissner, Alexander -- Socolovsky, Merav -- DK32520/DK/NIDDK NIH HHS/ -- R01 HL084168/HL/NHLBI NIH HHS/ -- R01 HL084168-02/HL/NHLBI NIH HHS/ -- R01 HL084168-03/HL/NHLBI NIH HHS/ -- R01 HL084168-04/HL/NHLBI NIH HHS/ -- R01 HL084168-04S1/HL/NHLBI NIH HHS/ -- R01 HL084168-05/HL/NHLBI NIH HHS/ -- T32-130807/PHS HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):799-802. doi: 10.1126/science.1207306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CpG Islands ; *DNA Methylation ; DNA Replication ; Dinucleoside Phosphates/metabolism ; Embryo, Mammalian ; Erythroblasts/*metabolism ; *Erythropoiesis ; Gene Expression Regulation, Developmental ; Genome ; Liver/embryology ; Locus Control Region ; Long Interspersed Nucleotide Elements ; Mice ; S Phase ; Sequence Analysis, DNA ; Transcription, Genetic ; beta-Globins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-01
    Description: In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Zachary D -- Chan, Michelle M -- Humm, Kathryn C -- Karnik, Rahul -- Mekhoubad, Shila -- Regev, Aviv -- Eggan, Kevin -- Meissner, Alexander -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003958/OD/NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 31;511(7511):611-5. doi: 10.1038/nature13581. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [4] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [5]. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3]. ; 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Division of Reproductive Endocrinology &Infertility, Department of Obstetrics &Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [3] Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02215, USA [4] Boston IVF, Waltham, Massachusetts 02451, USA [5] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [6]. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [4] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [5] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079558" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*metabolism ; Cell Line ; CpG Islands/physiology ; DNA/metabolism ; *DNA Methylation ; Embryonic Stem Cells ; Female ; Gene Expression Regulation, Developmental ; Humans ; Male ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-09
    Description: DNA methylation is a defining feature of mammalian cellular identity and is essential for normal development. Most cell types, except germ cells and pre-implantation embryos, display relatively stable DNA methylation patterns, with 70-80% of all CpGs being methylated. Despite recent advances, we still have a limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in-depth analysis of 42 whole-genome bisulphite sequencing data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, most of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription-factor-binding sites, which allow identification of key lineage-specific regulators. In addition, differentially methylated regions (DMRs) often contain single nucleotide polymorphisms associated with cell-type-related diseases as determined by genome-wide association studies. The results also highlight the general inefficiency of whole-genome bisulphite sequencing, as 70-80% of the sequencing reads across these data sets provided little or no relevant information about CpG methylation. To demonstrate further the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore, our selected DMRs can serve as a starting point to guide new, more effective reduced representation approaches to capture the most informative fraction of CpGs, as well as further pinpoint putative regulatory elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Gu, Hongcang -- Muller, Fabian -- Donaghey, Julie -- Tsai, Linus T-Y -- Kohlbacher, Oliver -- De Jager, Philip L -- Rosen, Evan D -- Bennett, David A -- Bernstein, Bradley E -- Gnirke, Andreas -- Meissner, Alexander -- ES017690/ES/NIEHS NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01AG36042/AG/NIA NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):477-81. doi: 10.1038/nature12433. Epub 2013 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925113" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CpG Islands/genetics ; *DNA Methylation ; Enhancer Elements, Genetic/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Humans ; Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA ; Sulfites/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...