ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Surface physics, nanoscale physics, low-dimensional systems  (2)
  • *DNA Breaks, Double-Stranded  (1)
  • 2010-2014  (3)
  • 1
    Publication Date: 2014-09-30
    Description: Author(s): D. J. Clark, V. Senthilkumar, C. T. Le, D. L. Weerawarne, B. Shim, J. I. Jang, J. H. Shim, J. Cho, Y. Sim, M.-J. Seong, S. H. Rhim, A. J. Freeman, K.-H. Chung, and Y. S. Kim While noncentrosymmetric MoS2 monolayer is known to exhibit efficient second-harmonic generation (SHG), there is currently no agreement on its absolute nonlinear susceptibility χ(2), varying over three orders of magnitude according to recent experiments. In order to resolve this conflicting issue, w... [Phys. Rev. B 90, 121409] Published Mon Sep 29, 2014
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-03
    Description: If not properly processed and repaired, DNA double-strand breaks (DSBs) can give rise to deleterious chromosome rearrangements, which could ultimately lead to the tumour phenotype. DSB ends are resected in a 5' to 3' fashion in cells, to yield single-stranded DNA (ssDNA) for the recruitment of factors critical for DNA damage checkpoint activation and repair by homologous recombination. The resection process involves redundant pathways consisting of nucleases, DNA helicases and associated proteins. Being guided by recent genetic studies, we have reconstituted the first eukaryotic ATP-dependent DNA end-resection machinery comprising the Saccharomyces cerevisiae Mre11-Rad50-Xrs2 (MRX) complex, the Sgs1-Top3-Rmi1 complex, Dna2 protein and the heterotrimeric ssDNA-binding protein RPA. Here we show that DNA strand separation during end resection is mediated by the Sgs1 helicase function, in a manner that is enhanced by Top3-Rmi1 and MRX. In congruence with genetic observations, although the Dna2 nuclease activity is critical for resection, the Mre11 nuclease activity is dispensable. By examining the top3 Y356F allele and its encoded protein, we provide evidence that the topoisomerase activity of Top3, although critical for the suppression of crossover recombination, is not needed for resection either in cells or in the reconstituted system. Our results also unveil a multifaceted role of RPA, in the sequestration of ssDNA generated by DNA unwinding, enhancement of 5' strand incision, and protection of the 3' strand. Our reconstituted system should serve as a useful model for delineating the mechanistic intricacy of the DNA break resection process in eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niu, Hengyao -- Chung, Woo-Hyun -- Zhu, Zhu -- Kwon, Youngho -- Zhao, Weixing -- Chi, Peter -- Prakash, Rohit -- Seong, Changhyun -- Liu, Dongqing -- Lu, Lucy -- Ira, Grzegorz -- Sung, Patrick -- P01 CA092584/CA/NCI NIH HHS/ -- P01 CA092584-100007/CA/NCI NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 ES007061/ES/NIEHS NIH HHS/ -- R01 ES007061-18/ES/NIEHS NIH HHS/ -- R01 ES015252/ES/NIEHS NIH HHS/ -- R01 ES015252-04/ES/NIEHS NIH HHS/ -- R01 ES015632/ES/NIEHS NIH HHS/ -- R01 ES015632-04/ES/NIEHS NIH HHS/ -- R01 GM057814/GM/NIGMS NIH HHS/ -- R01 GM057814-11/GM/NIGMS NIH HHS/ -- R01 GM080600/GM/NIGMS NIH HHS/ -- R01 GM080600-03S1/GM/NIGMS NIH HHS/ -- R01 GM080600-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 2;467(7311):108-11. doi: 10.1038/nature09318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20811460" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Helicases/metabolism ; *DNA Repair ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; RecQ Helicases/metabolism ; Replication Protein A/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-24
    Description: Author(s): G. Juska, V. Dimastrodonato, L. O. Mereni, T. H. Chung, A. Gocalinska, E. Pelucchi, B. Van Hattem, M. Ediger, and P. Corfdir A study of previously overlooked structural and optical properties of InGaAs heterostructures grown on (111)B oriented GaAs substrates patterned with inverted 7.5-μm pitch pyramidal recesses is presented. First, the composition of the confinement barrier material (GaAs in this work) and its growth t... [Phys. Rev. B 89, 205430] Published Fri May 23, 2014
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...