ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (1)
  • 2010-2014  (1)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-10-30
    Description: The accurate construction and interpretation of gene association networks (GANs) is challenging, but crucial, to the understanding of gene function, interaction and cellular behavior at the genome level. Most current state-of-the-art computational methods for genome-wide GAN reconstruction require high-performance computational resources. However, even high-performance computing cannot fully address the complexity involved with constructing GANs from very large-scale expression profile datasets, especially for the organisms with medium to large size of genomes, such as those of most plant species. Here, we present a new approach, GPLEXUS (http://plantgrn.noble.org/GPLEXUS/), which integrates a series of novel algorithms in a parallel-computing environment to construct and analyze genome-wide GANs. GPLEXUS adopts an ultra-fast estimation for pairwise mutual information computing that is similar in accuracy and sensitivity to the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) method and runs ∼1000 times faster. GPLEXUS integrates Markov Clustering Algorithm to effectively identify functional subnetworks. Furthermore, GPLEXUS includes a novel ‘condition-removing’ method to identify the major experimental conditions in which each subnetwork operates from very large-scale gene expression datasets across several experimental conditions, which allows users to annotate the various subnetworks with experiment-specific conditions. We demonstrate GPLEXUS’s capabilities by construing global GANs and analyzing subnetworks related to defense against biotic and abiotic stress, cell cycle growth and division in Arabidopsis thaliana.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...