ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chromatin and Epigenetics, Genomics  (1)
  • Computational Methods, Chromatin and Epigenetics, Genomics  (1)
  • Oxford University Press  (2)
  • Institute of Physics
  • 2010-2014  (2)
Collection
Publisher
  • Oxford University Press  (2)
  • Institute of Physics
Years
  • 2010-2014  (2)
Year
  • 1
    Publication Date: 2013-04-14
    Description: We report a target enrichment method to map nucleosomes of large genomes at unprecedented coverage and resolution by deeply sequencing locus-specific mononucleosomal DNA enriched via hybridization with bacterial artificial chromosomes. We achieved ~10 000-fold enrichment of specific loci, which enabled sequencing nucleosomes at up to ~500-fold higher coverage than has been reported in a mammalian genome. We demonstrate the advantages of generating high-sequencing coverage for mapping the center of discrete nucleosomes, and we show the use of the method by mapping nucleosomes during T cell differentiation using nuclei from effector T-cells differentiated from clonal, isogenic, naïve, primary murine CD4 and CD8 T lymphocytes. The analysis reveals that discrete nucleosomes exhibit cell type-specific occupancy and positioning depending on differentiation status and transcription. This method is widely applicable to mapping many features of chromatin and discerning its landscape in large genomes at unprecedented resolution.
    Keywords: Chromatin and Epigenetics, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-25
    Description: We report on the development of an unsupervised algorithm for the genome-wide discovery and analysis of chromatin signatures. Our Chromatin-profile Alignment followed by Tree-clustering algorithm (ChAT) employs dynamic programming of combinatorial histone modification profiles to identify locally similar chromatin sub-regions and provides complementary utility with respect to existing methods. We applied ChAT to genomic maps of 39 histone modifications in human CD4 + T cells to identify both known and novel chromatin signatures. ChAT was able to detect chromatin signatures previously associated with transcription start sites and enhancers as well as novel signatures associated with a variety of regulatory elements. Promoter-associated signatures discovered with ChAT indicate that complex chromatin signatures, made up of numerous co-located histone modifications, facilitate cell-type specific gene expression. The discovery of novel L1 retrotransposon-associated bivalent chromatin signatures suggests that these elements influence the mono-allelic expression of human genes by shaping the chromatin environment of imprinted genomic regions. Analysis of long gene-associated chromatin signatures point to a role for the H4K20me1 and H3K79me3 histone modifications in transcriptional pause release. The novel chromatin signatures and functional associations uncovered by ChAT underscore the ability of the algorithm to yield novel insight on chromatin-based regulatory mechanisms.
    Keywords: Computational Methods, Chromatin and Epigenetics, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...