ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (4)
  • Geological Society of America (GSA)  (1)
  • Macmillian Magazines Ltd.
  • Springer Nature
  • 2010-2014  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-05-23
    Description: SUMMARY On 2007 April 21, a M w = 6.2 earthquake shook the Aysén Fjord, Southern Chile in an unprecedented episode for this region characterized by low seismicity. The area is intersected by the Liquiñe-Ofqui Fault System (LOFS), a +1000-km-long strike-slip fault that absorbs part of the oblique convergence motion between Nazca and South America plates. To study the aftershock sequence of this main event, we installed a seismic network of 15 stations in the area for a period of nearly 7 months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentral coordinates and uncertainty estimates by using a non-linear probabilistic approach. We also obtained fault plane solutions based on first motion polarities and SV / P amplitude ratios. The velocity model shows an average V p / V s ratio of 1.76 for the area and low shear wave velocity values for the upper 3 km of crust. The aftershock seismicity was located mainly between 4 and 10 km depth and disposed in (1) an ∼N–S trending alignment that follows the trace of the LOFS and (2) an E–W alignment at the East of the main fault. Furthermore, we re-analysed the previously published foreshock and early aftershock activity of the sequence including four of its largest events, improving considerably previous location estimates. Selected focal mechanisms show a strong strike-slip component that coincides with the nature of the LOFS. Based on our new analysis we conclude that the 2007 Aysén seismic sequence had a tectonic origin related to activity on the southern end of the LOFS, however not discarding the presence and potential action of fluids on the aftershock activity.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-28
    Description: It is widely proposed that the oceanic mantle is hydrated by outer rise normal faults, and carries large amounts of water to the deep mantle. However, the extent of oceanic mantle hydration is poorly constrained by existing observations, and is a major source of uncertainty in determining the total water delivered to the mantle. Full waveform modeling of dispersed P-wave arrivals from events deep within the Wadati-Benioff zone of northern Japan shows that hydrated fault zone structures are present at intermediate depths. Analysis of the P-wave coda associated with events 5–35 km below the top of the slab gives an overall indication of the bulk hydration of the subducting oceanic mantle, and can be explained by a 40-km-thick layer that is 17%–31% serpentinized. This suggests that the top of the oceanic mantle is 2.0–3.5 wt% hydrated, subducting 170–318 Tg/m.y. of water per meter of arc beneath northern Japan. This order-of-magnitude increase in the estimated H 2 O flux in this arc implies that over the age of the Earth, the equivalent of as many as 3.5 present-day oceans of water could be subducted along the Kuril and Izu-Bonin arcs alone. These results offer the first direct measure of the lower lithosphere hydration at intermediate depths, and suggest that regassing of the mantle is more vigorous than has previously been proposed.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-04
    Description: Dispersed P -wave arrivals observed in the subduction zone forearc of Northern Japan suggest that low velocity subducted oceanic crustal waveguide persists to depths of at least 220 km. First arrivals from events at 150–220 km depth show that the velocity contrast of the waveguide reduces with depth. High frequency energy (〉2 Hz) is retained and delayed by the low velocity crustal waveguide while the lower frequency energy (〈0.5 Hz) travels at faster velocities of the surrounding mantle material. The guided wave energy then decouples from the low velocity crustal waveguide due to the bend of the slab and is seen at the surface 1–2 s after the low frequency arrival. Dispersive P -wave arrivals from WBZ earthquakes at 150–220 km depth are directly compared to synthetic waveforms produced by 2-D and 3-D full waveform finite difference simulations. By comparing both the spectrogram and the velocity spectra of the observed and synthetic waveforms we are able to fully constrain the dispersive waveform, and so directly compare the observed and synthetic waveforms. Using this full waveform modelling approach we are able to tightly constrain the velocity structures that cause the observed guided wave dispersion. Resolution tests using 2-D elastic waveform simulations show that the dispersion can be accounted for by a 6–8 km thick low velocity oceanic crust, with a velocity contrast that varies with depth. The velocities inferred for this variable low velocity oceanic crust can be explained by lawsonite bearing assemblages, and suggest that low velocity minerals may persist to greater depth than previously thought. 2-D simulations are benchmarked to 3-D full waveform simulations and show that the structures inferred by the 2-D approximation produce similar dispersion in 3-D. 2-D viscoelastic simulations show that including elevated attenuation in the mantle wedge can improve the fit of the dispersed waveform. Elevated attenuation in the low velocity layers can however be ruled out.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2010-03-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...