ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (5)
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (2)
  • J24
  • Life Sciences (General)
  • Elsevier  (3)
  • Istituto Nazionale di Geofisica e Vulcanologia  (2)
  • Springer Berlin Heidelberg  (2)
  • Nature Publishing Groups
  • 2010-2014  (7)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: To achieve a balance between uncertainty and efficiency in gravity measurements, we have investigated the applicability of combined measurements of absolute and relative gravity as a hybrid method for volcano monitoring. Between 2007 and 2009, three hybrid gravity surveys were conducted at Mt Etna volcano, in June 2007, July 2008, and July 2009. Absolute gravity data were collected with two absolute gravimeters, which represent the state of the art in recent advances in ballistic gravimeter technology: (1) the commercial instrument FG5#238 and (2) the prototype instrument IMGC-02. We carried out several field surveys and confirmed that both the absolute gravimeters can still achieve a 10 μGal or better uncertainty even when they are operated in severe environmental conditions. The use of absolute gravimeters in a field survey of the summit area of Mt Etna is unprecedented. The annual changes of the gravity measured over 2007–2008 and 2008–2009 provide unequivocal evidence that during the 2007–2009 period, two main phenomena of subsurface mass redistribution occurred in distinct sectors of the volcano, accompanying different eruptive episodes. From 2007 to 2008, a gravity change of −60 μGal was concentrated around the North- East Rift. This coincided with a zone affected by strong extensional tectonics, and hence might have been related to the opening of new voids. Between 2008 and 2009, a North-South elongate feature with a maximum gravity change of +80 μGal was identified in the summit craters area. This is interpreted to indicate recharge of a deepintermediate magma storage zone, which could have occurred when the 2008–2009 eruption was still ongoing.
    Description: Published
    Description: 1745-1756
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mt Etna . Relative gravity . Absolute gravity . ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the period from June to September 2011, the Stromboli volcano was affected by an activity characterized by an increase of the volcanic tremor amplitude, in the magnitude of explosions and with some lava overflows. In order to examine and understand in more detail this particular phase of the volcano, we present here an unsupervised investigation of the waveform variation of the explosion-quakes recorded during this period. The aim is to identify a possible relationship between the temporal changes of these events and the volcano seismic activity. The analysis is performed on a dataset of about 8400 explosion-quakes by using a SOM neural network. This technique works well with large datasets allowing to find out unpredicted characteristics among them. The SOM clustering highlights sudden changes occurring at the end of July and of August and a permanent variation between June and September reflecting a modification in the volcano activity. These results could be interesting for focusing the analysis of the seismological dataset in these intervals in order to evidence minor, but important variations, which were previously undetected and to improve the knowledge on the explosive dynamics of the volcano.
    Description: Published
    Description: 111-119
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: restricted
    Keywords: Explosion-quakes ; SOM neural network ; unsupervised clustering ; volcano dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The significant amounts of selenium(Se)emitted by volcanoesmay have important impact on human health due to the narrow range between nutrition requirement and toxic effects for living organisms upon Se exposure. Although soils play a key role in determining the level in food and water and thereby human health, little is known about the behaviour of Se in volcanic soils. In this work we evaluated the Se release during rainwater–soil interaction under controlled conditions using soils collected on the flanks of Etna volcano and synthetic rain. Seleniumconcentrations in soil leachate solutions displayed a spatial distribution, which cannot be explained by plume deposition, total Se soil concentrations or the presence of Fe oxides. Instead, Al compounds and to a minor extent SOM were identified as the active phases controlling the selenate mobilization during interaction with sulphate-containing rainwater. This shows the importance of soils as reactive interfaces. Selenium is mobilized when volcanic-derived acid rain interacts with poorly developed soils close to the crater. This geogenic process might influence the chemical composition of groundwater and as a result, human health.
    Description: Published
    Description: 235–244
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Selenium ; Volcanic soils ; Geogenic ; Volcanoes ; Contamination ; Groundwater ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i) an accurate analysis of the past behavior of the volcano; (ii) a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm); and (iii) high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to landuse planning and hazard mitigation are presented.
    Description: This study was sponsored by the Italian National Civil Defence Department and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), project V3_6/09 "V3_6 – Etna".
    Description: Published
    Description: 568-578
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic risk ; cellular automata ; Algorithms and implementation ; Statistical analysis ; Data processing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The availability of the new computing techniques allows to perform advanced analysis in near real time, improving the seismological monitoring systems, which can extract more significant information from the raw data in a really short time. However, the correct identification of the events remains a critical aspect for the reliability of near real time automatic analysis. We approach this problem by using Neural Networks (NN) for discriminating among the seismic signals recorded in the Neapolitan volcanic area (Vesuvius, Phlegraean Fields). The proposed neural techniques have been also applied to other sets of seismic data recorded in Stromboli volcano. The obtained results are very encouraging, giving 100% of correct classification for some transient signals recorded at Vesuvius and allowing the clustering of the large dataset of VLP events recorded at Stromboli volcano.
    Description: Published
    Description: 399-415
    Description: open
    Keywords: Neural Networks ; Italian volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5–50 lg m 3). Minor and trace element concentrations ranged from about 0.001 to 1 lg m 3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a 1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a 1 (Al, Fe, Si) to 0.01–0.1 t a 1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.
    Description: Published
    Description: 7401-7425
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: trace elements ; volcanic plume chemistry ; bulk deposition ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Aim of this paper is to identify variations in Very-Long-Period (VLP) source associated with eruptive style changes at Stromboli volcano (Italy) and to retrieve information about the shallow plumbing system that sustains the eruptive activity. We have considered a dataset of 74493 VLP events recorded during the period from January through August 2007, when an effusive eruption occurred (February 27–April 2).We performed a polarization analysis of the entire dataset and divided the considered period into four sub-periods on the basis of polarization characteristics. We then located the events and selected a subset of these events by applying a location quality threshold. The high quality locations demonstrate that during the effusive eruption the VLP sources first moved downward and then moved southwestward. To retrieve information about the geometry of the structures where the source processes take place, we further consider a subset of events and estimate their source mechanisms by using a moment tensor source function (MTSF) inversion technique. Inversion of the waveforms of the VLP events that occurred on February 27 allows us to obtain information about the dynamics of different source centroids distributed along different portions of the shallow magmatic conduits. The structure defined by the locations and source mechanisms shows a greater complexity compared with previous studies and their time variations give an insight into the kinematics of the eruption.
    Description: Published
    Description: 162–171
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; very-long-period events ; seismic source mechanism ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...