ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-23
    Description: A new version of the High-Resolution Infrared Radiation Sounder (HIRS) upper tropospheric water vapor channel (channel 12) brightness temperature dataset is developed using intersatellite calibrated data. In this dataset, only those pixels affected by upper tropospheric clouds are discarded. Compared to the previous version that was based on column-clear-sky data, the new version has much better daily spatial coverage. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders vary with respect to brightness temperature with larger differences for higher (dry) values. Correlations between the HIRS upper tropospheric water vapor channel brightness temperatures and several major climate indices show strong signals during cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. Qualitatively, moist signals are correlated with troughs and ascending branches of the circulation, while dry signals occur with ridges and descent. These correlations show the potential of using the upper tropospheric water vapor channel brightness temperature dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-21
    Description: A new version of the upper tropospheric water vapor dataset is developed using intersatellite calibrated all-sky High-Resolution Infrared Radiation Sounder (HIRS) data. In this dataset, the majority of pixels that do not affect the water vapor processing in the upper troposphere are retained. Compared to the previous version that was based on column-clear-sky data, the new version has a much better daily spatial coverage and provides a better representation of the atmosphere. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders are examined, and the analysis displays that the differences vary with respect to brightness temperature. An examination of the correlations of the HIRS upper tropospheric water vapor with major climate indices shows that the dataset is well correlated with climate indices especially in cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. The correlation analysis shows the potential of using the upper tropospheric water vapor dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-05
    Description: We use 30 years of intercalibrated HIRS data to produce a 30 year data set of upper tropospheric humidity with respect to ice (UTHi). Since the required brightness temperatures (channels 12 and 6, T12 and T6) are intercalibrated to different versions of the HIRS sensors (HIRS/2 and HIRS/4) it is necessary to convert the channel 6 brightness temperatures which are intercalibrated to HIRS/4 into equivalent brightness temperatures intercalibrated to HIRS/2, which is achieved using a linear regression. Using the new regression coefficients we produce daily files of UTHi, T12 and T6, for each NOAA satellite and METOP-A, which carry the HIRS instrument. From this we calculate daily and monthly means in 2.5° × 2.5° resolution for the northern mid-latitude zone 30 to 60° N. As a first application we calculate decadal means of UTHi and the brightness temperatures for the two decades 1980–1989 and 2000–2009. We find that the humidity mainly increased from the 1980s to the 2000s and that this increase is highly statistically significant in large regions of the considered mid-latitude belt. The main reason for this result and its statistical significance is the corresponding increase of the T12 variance. Changes of the mean brightness temperatures are less significant.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-28
    Description: We use 30 years of intercalibrated HIRS (High-Resolution Infrared Radiation Sounder) data to produce a 30-year data set of upper tropospheric humidity with respect to ice (UTHi). Since the required brightness temperatures (channels 12 and 6, T12 and T6) are intercalibrated to different versions of the HIRS sensors (HIRS/2 and HIRS/4) it is necessary to convert the channel 6 brightness temperatures which are intercalibrated to HIRS/4 into equivalent brightness temperatures intercalibrated to HIRS/2, which is achieved using a linear regression. Using the new regression coefficients we produce daily files of UTHi, T12 and T6, for each NOAA satellite and METOP-A (Meteorological Operational Satellite Programme), which carry the HIRS instrument. From this we calculate daily and monthly means in 2.5° × 2.5° resolution for the northern midlatitude zone 30–60° N. As a first application we calculate decadal means of UTHi and the brightness temperatures for the two decades 1980–1989 and 2000–2009. We find that the humidity mainly increased from the 1980s to the 2000s and that this increase is highly statistically significant in large regions of the considered midlatitude belt. The main reason for this result and its statistical significance is the corresponding increase of the T12 variance. Changes of the mean brightness temperatures are less significant.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-25
    Description: With one bias estimation method, the latitude-related error distribution of instrumental biases estimated from the GPS observations in Chinese middle and low latitude region in 2004 is analyzed statistically. It is found that the error of GPS instrumental biases estimated under the assumption of a quiet ionosphere has an increasing tendency with the latitude decreasing. Besides the asymmetrical distribution of the plasmaspheric electron content, the obvious spatial gradient of the ionospheric total electron content (TEC) along the meridional line that related to the Equatorial Ionospheric Anomaly (EIA) is also considered to be responsible for this error increasing. The RMS of satellite instrumental biases estimated from mid-latitude GPS observations in 2004 is around 1 TECU (1 TECU = 1016/m2), and the RMS of the receiver's is around 2 TECU. Nevertheless, the RMS of satellite instrumental biases estimated from GPS observations near the EIA region is around 2 TECU, and the RMS of the receiver's is around 3–4 TECU. The results demonstrate that the accuracy of the instrumental bias estimated using ionospheric condition is related to the receiver's latitude with which ionosphere behaves a little differently. For the study of ionospheric morphology using the TEC derived from GPS data, in particular for the study of the weak ionospheric disturbance during some special geo-related natural hazards, such as the earthquake and severe meteorological disasters, the difference in the TEC accuracy over different latitude regions should be paid much attention.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...