ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-18
    Description: The accurate stream flow composition simulated by different models is rarely discussed, and few studies addressed the model behaviors affected by the model structures. This study compared the simulated stream flow composition derived from two models, namely HBV and TOPMODEL. A total of 23 storms with a wide rainfall spectrum were utilized and independent geochemical data (to derive the stream composition using end-member mixing analysis, EMMA) were introduced. Results showed that both hydrological models generally perform stream discharge satisfactory in terms of the Nash efficiency coefficient, correlation coefficient, and discharge volume. However, the three simulated flows (surface flow, interflow, and base flow) derived from the two models were different with the change of storm intensity and duration. Both simulated surface flows showed the same patterns. The HBV simulated base flow dramatically increased with the increase of storm duration. However, the TOP-derived base flow remained stable. Meanwhile, the two models showed contrasting behaviors in the interflow. HBV prefers to generate less interflow but percolates more to the base flow to match the stream flow, which implies that this model might be suited for thin soil layer. The use of the models should consider more environmental background data into account. Compared with the EMMA-derived flows, both models showed a significant 2 to 4 h time lag, indicating that the base-flow responses were faster than the models represented. Our study suggested that model intercomparison under a wide spectrum of rainstorms and with independent validation data (geochemical data) is a good means of studying the model behaviors. Rethinking the characterization of the model structure and the watershed characteristics is necessary in selecting the more appropriate hydrological model.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...