ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (5)
  • Cambridge University Press  (1)
  • 2010-2014  (6)
  • 1
    Publication Date: 2013-05-15
    Description: Modeling and monitoring plankton functional types (PFTs) is challenged by insufficient amount of field measurements to ground-truth both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically-sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs, and focus on resolving the question of diatom-coccolithophore co-existence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high latitude areas, and indicate seasonal co-existence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, was so far not captured by state-of-the-art dynamic models which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-28
    Description: The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project will test the overarching hypothesis that an active hydrological system exists beneath a West Antarctic ice stream that exerts a major control on ice dynamics, and the metabolic and phylogenetic diversity of the microbial community in subglacial water and sediment. WISSARD will explore Subglacial Lake Whillans (SLW, unofficial name) and its outflow toward the grounding line where it is thought to enter the Ross Ice Shelf seawater cavity. Introducing microbial contamination to the subglacial environment during drilling operations could compromise environmental stewardship and the science objectives of the project, consequently we developed a set of tools and procedures to directly address these issues. WISSARD hot water drilling efforts will include a custom water treatment system designed to remove micron and sub-micron sized particles (biotic and abiotic), irradiate the drilling water with germicidal ultraviolet (UV) radiation, and pasteurize the water to reduce the viability of persisting microbial contamination. Our clean access protocols also include methods to reduce microbial contamination on the surfaces of cables/hoses and down-borehole equipment using germicidal UV exposure and chemical disinfection. This paper presents experimental data showing that our protocols will meet expectations established by international agreement between participating Antarctic nations.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-05
    Description: Sensitivities of the oceanic biological pump within the GISS climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM) which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. Mixing in the Southern Ocean is shown to be a~good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-24
    Description: We compared the functional response of a biogeochemical data assimilation model versus an empirical satellite-derived algorithm in describing the variation of four phytoplankton (diatoms, cyanobacteria, coccolithophores and chlorophytes) groups globally and in 12 major oceanographic basins. Global mean differences of all groups were within ~ 15% of an independent observation data base for both approaches except for satellite-derived chlorophytes. Diatoms and cyanobacteria concentrations were significantly (p 〈 0.05) correlated with the independent observation data base for both methods. Coccolithophore concentrations were only correlated with the in situ data for the model approach and the chlorophyte concentration was only significantly correlated to the in situ data for the satellite-derived approach. Using monthly means from 1998–2007, the seasonal variation from the satellite-derived approach and model were significantly correlated in 11 regions for diatoms and in 9 for coccolithophores but only in 3 and 2 regions for cyanobacteria and chlorophytes. Most disagreement on the seasonal variation of phytoplankton composition occurred in the North Pacific and Antarctic where, except for diatoms, no significant correlation could be found between the monthly mean concentrations derived from both approaches. In these two regions there was also an overestimate of diatom concentration by the model of ~ 60% whereas the satellite-derived approach was closer to in situ data (8–26% underestimate). Chlorophytes were the group for which both approaches differed most and that was furthest from the in situ data. These results highlight the strengths and weaknesses of both approaches and allow us to make some suggestions to improve our approaches to understanding phytoplankton dynamics and distribution.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-22
    Description: Modeling and monitoring plankton functional types (PFTs) is challenged by the insufficient amount of field measurements of ground truths in both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs and focus on resolving the question of diatom–coccolithophore coexistence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high-latitude areas and indicate seasonal coexistence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, has so far not been captured by state-of-the-art dynamic models, which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air–sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air–sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10%) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12–34%, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...