ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • American Physical Society
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2011-05-17
    Description: Experimental studies indicate that crystal-bearing magma exhibits non-Newtonian behavior at high strain rates and solid fractions. We use a zero-dimensional (0-D) inversion model to reevaluate rheological parameters and shear heating effects from laboratory data on crystal-bearing magma. The results indicate non-Newtonian behavior with power law coefficients of up to n = 13.5. It has been speculated that finite strain effects, shear heating, power law melt rheology, or plasticity are responsible for this non-Newtonian behavior. We use 2-D direct numerical crystal-scale simulations to study the relative importance of these mechanisms. These simulations demonstrate that shear heating has little effect on aggregate (bulk) rheologies. Finite strain effects result in both strain weakening and hardening, but the resulting power law coefficient is modest (maximum n = 1.3). For simulations with spherical crystals the strain weakening and hardening behavior is related to rearrangement of crystals rather than strain rate related weakening. Finite strain effects were insignificant in a numerical simulation with naturally shaped crystals. Strain partitioning into the melt phase may induce microscopic stresses that are adequate to provoke a nonlinear viscous response in the melt. Large differential stresses and low effective stresses revealed by the simulations are sufficient to cause crystals to fail plastically. Numerical experiments that account for plastic failure show large power law coefficients (n ≈ 50 in some simulations). We conclude that this effect is the dominant cause of the strong nonlinear viscous response of crystal-bearing magmas observed in laboratory experiments.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-08
    Description: Thin-skinned fold-and-thrust belts related to convergence tectonics develop by scraping off a rock sequence along a weaker basal décollement often formed by water-saturated shale layers or low-viscosity salt horizons. A two-dimensional finite element model with a viscoelastoplastic rheology is used to investigate the structural evolution of fold-and-thrust belts overlying different types of décollements. In addition, the influence of multiple weak layers in the stratigraphic column is studied. Model shale décollements are frictional, with lower friction angles as the cover sequence. Model salt layers behave linear viscous, due to a lower viscosity as the cover sequence, or with a power law rheology. Single viscous décollement simulations have been compared to an analytical solution concerning faulting versus folding. Results show that fold-and-thrust belts with a single frictional basal décollement generate thrust systems ramping from the décollement to the surface. Spacing between thrust ramps depends on the thickness of the cover sequence. The structural evolution of simulations with an additional low-frictional layer depends on the strength relationship between the basal and the intersequential décollement. Tectonic underplating and antiformal stacking occur if the within-sequence décollement is weaker. In the frontal part of models, deformation is restricted to the upper part and imbrication occurs with a wavelength depending on the depth of the intermediate weak layer. “Salt” décollement with a viscosity of 1018 Pa⋅s leads to isolated box folds (detachment folds). Multiple salt layers (1018 Pa⋅s) result in long-wavelength folding. Our results for both frictional and viscous décollements are in bulk agreement with the Mohr-Coulomb type, critical wedge theory.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...