ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-10-16
    Description: Effects of the sea surface temperature (SST) front along the East China Sea Kuroshio on sea surface winds at different time scales are investigated. In winter and spring, the climatological vector wind is strongest on the SST front while the scalar wind speed reaches a maximum on the warm flank of the front and is collocated with the maximum difference between sea surface temperature and surface air temperature (SST − SAT). The distinction is due to the change in relative importance of two physical processes of SST–wind interaction at different time scales. The SST front–induced sea surface level pressure (SLP) adjustment (SF–SLP) contributes to a strong vector wind above the front on long time scales, consistent with the collocation of baroclinicity in the marine boundary layer and corroborated by the similarity between the thermal wind and observed wind shear between 1000 and 850 hPa. In contrast, the SST modulation of synoptic winds is more evident on the warm flank of the SST front. Large thermal instability of the near-surface layer strengthens temporal synoptic wind perturbations by intensifying vertical mixing, resulting in a scalar wind maximum. The vertical mixing and SF–SLP mechanisms are both at work but manifest more clearly at the synoptic time scale and in the long-term mean, respectively. The cross-frontal variations are 1.5 m s−1 in both the scalar and vector wind speeds, representing the vertical mixing and SF–SLP effects, respectively. The results illustrate the utility of high-frequency sampling by satellite scatterometers.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-05
    Description: A sharp sea surface temperature front develops between the warm water of the Gulf Stream and cold continental shelf water in boreal winter. This front has a substantial impact on the marine boundary layer. The present study analyzes and synthesizes satellite observations and reanalysis data to examine how the sea surface temperature front influences the three-dimensional structure of low-level clouds. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite captures a sharp low-level cloud transition across the Gulf Stream front, a structure frequently observed under the northerly condition. Low-level cloud top (
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...