ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (11)
  • Copernicus GmbH
  • 2010-2014  (11)
  • 1
    Publication Date: 2010-07-01
    Description: The issue of multidecadal variability in the North Atlantic has been an important topic of late. It is clear that there are multidecadal variations in several climate variables in the North Atlantic, such as sea surface temperature and sea level height. The details of this variability, in particular the dominant patterns and time scales, are confusing from both an observational as well as a theoretical point of view. After analyzing results from observational datasets and a 500-yr simulation of an Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) climate model, two dominant time scales (20–30 and 50–70 yr) of multidecadal variability in the North Atlantic are proposed. The 20–30-yr variability is characterized by the westward propagation of subsurface temperature anomalies. The hypothesis is that the 20–30-yr variability is caused by internal variability of the Atlantic Meridional Overturning Circulation (MOC) while the 50–70-yr variability is related to atmospheric forcing over the Atlantic Ocean and exchange processes between the Atlantic and Arctic Oceans.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-15
    Description: The impact of atmospheric feedbacks on the multiple equilibria (ME) regime of the Atlantic meridional overturning circulation (MOC) is investigated using a fully implicit hybrid coupled model (HCM). The HCM consists of a global ocean model coupled to an empirical atmosphere model that is based on linear regressions of the heat, net evaporative, and momentum fluxes generated by a fully coupled climate model onto local as well as Northern Hemisphere averaged sea surface temperatures. Using numerical continuation techniques, bifurcation diagrams are constructed for the HCM with the strength of an anomalous freshwater flux as the bifurcation parameter, which allows for an efficient first-order estimation of the effect of interactive surface fluxes on the MOC stability. The different components of the atmospheric fluxes are first considered individually and then combined. Heat feedbacks act to destabilize the present-day state of the MOC and to stabilize the collapsed state, thus leaving the size of the ME regime almost unaffected. In contrast, interactive freshwater fluxes cause a destabilization of both the present-day and collapsed states of the MOC. Wind feedbacks are found to have a minor impact. The joint effect of the three interactive fluxes is to narrow the range of ME. The shift of the saddle-node bifurcation that terminates the present-day state of the ocean is further investigated by adjoint sensitivity analysis of the overturning rate to surface fluxes. It is found that heat feedbacks primarily affect the MOC stability when they change the heat fluxes over the North Atlantic subpolar gyre, whereas interactive freshwater fluxes have an effect everywhere in the Atlantic basin.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-07
    Description: Oscillatory behavior of the Atlantic meridional overturning circulation (MOC) is thought to underlie Atlantic multidecadal climate variability. While the energy sources and sinks driving the mean MOC have received intense scrutiny over the last decade, the governing energetics of the modes of variability of the MOC have not been addressed to the same degree. This paper examines the energy conversion processes associated with this variability in an idealized North Atlantic Ocean model. In this model, the multidecadal variability arises through an instability associated with a so-called thermal Rossby mode, which involves westward propagation of temperature anomalies. Applying the available potential energy (APE) framework from stratified turbulence to the idealized ocean model simulations, the authors study the multidecadal variability from an energetics viewpoint. The analysis explains how the propagation of the temperature anomalies leads to changes in APE, which are subsequently converted into the kinetic energy changes associated with variations in the MOC. Thus, changes in the rate of generation of APE by surface buoyancy forcing provide the kinetic energy to sustain the multidecadal mode of variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-03-01
    Description: Recent model results have suggested that there may be a scalar indicator Σ monitoring whether the Atlantic meridional overturning circulation (MOC) is in a multiple equilibrium regime. The quantity Σ is based on the net freshwater transport by the MOC into the Atlantic basin. It changes sign as soon as the steady Atlantic MOC enters the multiple equilibrium regime because of an increased freshwater input in the northern North Atlantic. This paper addresses the issue of why the sign of Σ is such a good indicator for the multiple equilibrium regime. Changes in the Atlantic freshwater budget over a complete bifurcation diagram and in finite amplitude perturbation experiments are analyzed in a global ocean circulation model. The authors show that the net anomalous freshwater transport into or out of the Atlantic, resulting from the interactions of the velocity perturbations and salinity background field, is coupled to the background (steady state) state freshwater budget and hence to Σ. The sign of Σ precisely shows whether this net anomalous freshwater transport is stabilizing or destabilizing the MOC. Therefore, it can indicate whether the MOC is in a single or multiple equilibrium regime.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-01
    Description: The strongly eddying version of the Parallel Ocean Program (POP) is used in two 45-yr simulations to investigate the response of the Atlantic meridional overturning circulation (AMOC) to strongly enhanced freshwater input due to Greenland melting, with an integrated flux of 0.5 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1). For comparison, a similar set of experiments is performed using a noneddying version of POP. The aim is to identify the signature of the salt advection feedback in the two configurations. For this reason, surface salinity is not restored in these experiments. The freshwater input leads to a quantitatively comparable reduction of the overturning strength in the two models. To examine the importance of transient effects in the relation between AMOC strength and density distribution, the results of the eddy-resolving model are related to water mass transformation theory. The freshwater forcing leads to a reduction of the rate of light to dense water conversion in the North Atlantic, but there is no change in dense to light transformation elsewhere, implying that high density layers are continuously deflating. The main focus of the paper is on the effect of the AMOC reduction on the basinwide advection of freshwater. The low-resolution model results show a change of the net freshwater advection that is consistent with the salt advection feedback. However, for the eddy-resolving model, the net freshwater advection into the Atlantic basin appears to be unaffected, despite the significant change in the large-scale velocity structure.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-01
    Description: In this paper the authors study the interactions of additive noise and nonlinear dynamics in a quasigeostrophic model of the double-gyre wind-driven ocean circulation. The recently developed framework of dynamically orthogonal field theory is used to determine the statistics of the flows that arise through successive bifurcations of the system as the ratio of forcing to friction is increased. This study focuses on the understanding of the role of the spatial and temporal coherence of the noise in the wind stress forcing. When the wind stress noise is temporally white, the statistics of the stochastic double-gyre flow does not depend on the spatial structure and amplitude of the noise. This implies that a spatially inhomogeneous noise forcing in the wind stress field only has an effect on the dynamics of the flow when the noise is temporally colored. The latter kind of stochastic forcing may cause more complex or more coherent dynamics depending on its spatial correlation properties.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-01
    Description: Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change has indicated that Arctic Ocean variability on these time scales is associated with changes in basin-wide salinity patterns. In this paper the internal modes of variability in an idealized Arctic Basin are determined by considering the stability of salinity-driven flows. An internal ocean mode with a multidecadal time scale is found, with a spatial pattern similar to that obtained in the analysis of the CM2.1 results. The modes propagate as a “saline Rossby wave” induced by the background salinity gradient.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-01
    Description: In this paper, sequential importance sampling is used to assess the impact of observations on an ensemble prediction for the decadal path transitions of the Kuroshio Extension. This particle-filtering approach gives access to the probability density of the state vector, which allows the predictive power—an entropy-based measure—of the ensemble prediction to be determined. The proposed setup makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a postprocessing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one year. The method is applied in an identical-twin experiment for the Kuroshio Extension using a reduced-gravity shallow-water model. This study investigates the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering states of the Kuroshio Extension. Optimal observation locations correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the Kuroshio Extension. During the contracted state it is located south of Japan, where the Kuroshio separates from the coast.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-01
    Description: A well-studied example of natural climate variability is the impact of large freshwater input to the polar oceans, simulating glacial melt release or an amplification of the hydrological cycle. Such forcing can reduce, or entirely eliminate, the formation of deep water in the polar latitudes and thereby weaken the Atlantic meridional overturning circulation (MOC). This study uses a series of idealized, eddy-permitting numerical simulations to analyze the energetic constraints on the Atlantic Ocean's response to anomalous freshwater forcing. In this model, the changes in MOC are not correlated with the global input of mechanical energy: both kinetic energy and available potential energy (APE) increase with northern freshwater forcing, while the MOC decreases. However, a regional analysis of APE density supports the notion that local maxima in APE density control the response of the MOC to freshwater forcing perturbations. A coupling between APE input and changes in local density anomalies accounts for the difference in time scales between the recovery and collapse of the MOC.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-11-01
    Description: The present-day global meridional overturning circulation (MOC) with formation of North Atlantic Deep Water (NADW) and the absence of a deep-water formation in the North Pacific is often considered to be caused by the fact that the North Pacific basin is a net precipitative, while the North Atlantic is a net evaporative basin. In this paper, the authors study the effect of asymmetries in continent geometry and freshwater fluxes on the MOC both in an idealized two-dimensional model and in a global ocean model. This study approaches the problem from a multiple equilibria perspective, where asymmetries in external factors constrain the existence of steady MOC patterns. Both this multiple equilibria perspective and the fact that a realistic global geometry is used add new aspects to the problem. In the global model, it is shown that the Atlantic forced by net precipitation can have a meridional overturning circulation with northern sinking and a sea surface salinity that resembles the present-day salinity field. The model results are suggestive of the importance of factors other than the freshwater flux asymmetries, in particular continental asymmetries, in producing the meridional overturning asymmetry.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...