ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Entrainment  (1)
  • Estuarine mixing  (1)
  • Estuarine turbidity maximum  (1)
  • American Geophysical Union  (3)
  • American Meteorological Society (AMS)
  • Copernicus
  • Wiley
  • 2010-2014  (3)
Collection
Publisher
  • American Geophysical Union  (3)
  • American Meteorological Society (AMS)
  • Copernicus
  • Wiley
Years
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C05004, doi:10.1029/2003JC002094.
    Description: Rates of turbulent kinetic energy (TKE) production and buoyancy flux in the region immediately seaward (~1 km) of a highly stratified estuarine front at the mouth of the Fraser River (British Columbia, Canada) are calculated using a control volume approach. The calculations are based on field data obtained from shipboard instrumentation, specifically velocity data from a ship mounted acoustic Doppler current profiler (ADCP), and salinity data from a towed conductivity-temperature-depth (CTD) unit. The results allow for the calculation of vertical velocities in the water column, and the total vertical transport of salt and momentum. The vertical turbulent transport quantities (inline equation, inline equation) can then be estimated as the difference between the total transport and the advective transport. Estimated production is on the order of 10−3 m2 s−3, yielding a value of ɛ(νN2)−1 on the order of 104. This rate of TKE production is at the upper limit of reported values for ocean and coastal environments. Flux Richardson numbers in this highly energetic system generally range from 0.15 to 0.2, with most mixing occurring at gradient Richardson numbers slightly less than inline equation. These values compare favorably with other values in the literature that are associated with turbulence observations from regimes characterized by scales several orders of magnitude smaller than are present in the Fraser River.
    Description: This work was performed as a part of D. MacDonald’s Ph.D. thesis, and was funded by Office of Naval Research grants N000-14-97-10134 and N000-14-97- 10566, National Science Foundation grant OCE-9906787, a National Science Foundation graduate fellowship, and support from the WHOI Academic Programs Office.
    Keywords: Turbulence ; Entrainment ; Estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C10013, doi:10.1029/2012JC008124.
    Description: Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
    Description: This research was funded by a grant from the Hudson River Foundation (#002/07A). D.R. was partially supported by the Office of Naval Research (N00014-08-1-0846).
    Description: 2013-04-17
    Keywords: Estuarine turbidity maximum ; Lateral sediment distribution ; Salinity fronts ; Sediment flux ; Sediment trapping ; Stratification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C08003, doi:10.1029/2009JC005702.
    Description: The estuarine boundary layer affected by a horizontal density gradient exhibits temporal evolution over a tidal cycle, in a manner similar to the diurnal cycle of the ocean surface mixed layer. A large eddy simulation (LES) model is developed to investigate the physics controlling the growth of the boundary layer during the flood tide and restratification during the ebb tide. Turbulent kinetic energy, momentum and salt fluxes, bottom stress, and energy dissipation rates calculated from the LES model all show a strong flood-ebb asymmetry. Analysis of the turbulent kinetic energy (TKE) budget shows a primary balance between shear production and dissipation in the well-mixed boundary layer over the tidal cycle. However, TKE transport term is found to be important across the edge of the boundary layer during the flood tide so turbulent energy generated in the bottom boundary layer can be transferred to the stratified pycnocline region. Tidal straining leads to a small and weakly convective region inside the boundary layer during the flood tide but the strain-induced buoyancy flux does not make a significant contribution to the turbulence generation. Additional LES runs are conducted by switching off the baroclinic pressure gradient term in the momentum equation and the tidal straining term in the salinity equation to show that the baroclinic pressure gradient is the main mechanism responsible for generating the flood-ebb mixing asymmetry.
    Description: This work is supported by grants OCE-0451699 (M.L.), OCE-0452380 (U.P. and S.R.), and OCE-0451740 (W.R.G.) from the National Science Foundation.
    Keywords: Estuarine mixing ; Large Eddy Simulations ; Tidal straining
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...