ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America (SSA)  (3)
  • American Association for the Advancement of Science (AAAS)
  • 2010-2014  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-10-04
    Description: We investigate the ongoing seismicity in the Raton Basin and find that the deep injection of wastewater from the coal-bed methane field is responsible for inducing the majority of the seismicity since 2001. Many lines of evidence indicate that this earthquake sequence was induced by wastewater injection. First, there was a marked increase in seismicity shortly after major fluid injection began in the Raton Basin in 1999. From 1972 through July 2001, there was one M≥4 earthquake in the Raton Basin, whereas 12 occurred between August 2001 and 2013. The statistical likelihood that such a rate change would occur if earthquakes behaved randomly in time is 3.0%. Moreover, this rate change is limited to the area of industrial activity. Earthquake rates remain low in the surrounding area. Second, the vast majority of the seismicity is within 5 km of active disposal wells and is shallow, ranging between 2 and 8 km depth. The two most carefully studied earthquake sequences in 2001 and 2011 have earthquakes within 2 km of high-volume, high-injection-rate wells. Third, injection wells in the area are commonly very high volume and high rate. Two wells adjacent to the August 2011 M  5.3 earthquake injected about 4.9 million cubic meters of wastewater before the earthquake, more than seven times the amount injected at the Rocky Mountain Arsenal well that caused damaging earthquakes near Denver, Colorado, in the 1960s. The August 2011 M  5.3 event is the second-largest earthquake to date for which there is clear evidence that the earthquake sequence was induced by fluid injection. Online Material: Gutenberg–Richter plots for varying decade-long catalogs.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-03
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-01
    Description: A series of near-surface chemical explosions conducted at the San Andreas Fault Observatory at Depth (SAFOD) main hole were recorded by high-frequency downhole receiver arrays in April 2005. These seismic recordings at depths ranging from the surface to 2.3 km constrain the shallow velocity and attenuation structure as well as the first-order characteristics of the source. Forward modeling of the explosions indicates that a source consisting of combined explosion, delayed implosion, and second-order moment-tensor components (corresponding to a distribution of vertical shear dislocations in the rock directly above the explosion) is sufficient to characterize the generated seismic wave fields to first order. Grid searches over source parameters controlling the nonexplosive components allow for the quantification of distributed vertical shear above the source and the estimation of the moment and time delay of the implosive component relative to the explosion. An estimated implosive to explosive moment ratio of 0.34 to 0.43 indicates a net static moment and positive macroscopic volume change.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...