ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AMS (American Meteorological Society)  (9)
  • Elsevier  (5)
  • Taylor & Francis  (1)
  • AGU / Wiley
  • GEOMAR
  • 2010-2014  (15)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 (5). pp. 824-839.
    Publikationsdatum: 2018-04-12
    Beschreibung: The mechanisms involved in setting the annual cycle of the Florida Current transport are revisited using an adjoint model approach. Adjoint sensitivities of the Florida Current transport to wind stress reproduce a realistic seasonal cycle with an amplitude of ~1.2 Sv (1 Sv ≡ 106 m3 s−1). The annual cycle is predominantly determined by wind stress forcing and related coastal upwelling (downwelling) north of the Florida Strait along the shelf off the North American coast. Fast barotropic waves propagate these anomalies southward and reach the Florida Strait within a month, causing an amplitude of ~1 Sv. Long baroclinic planetary Rossby waves originating from the interior are responsible for an amplitude of ~0.8 Sv but have a different phase. The sensitivities corresponding to the first baroclinic mode propagate westward and are highly influenced by topography. Considerable sensitivities are only found west of the Mid-Atlantic Ridge, with maximum values at the western shelf edge. The second baroclinic mode also has an impact on the Florida Current variability, but only when a mean flow is present. A second-mode wave train propagates southwestward from the ocean bottom on the western side of the Mid-Atlantic Ridge between ~36° and 46°N and at Flemish Cap, where the mean flow interacts with topography, to the surface. Other processes such as baroclinic waves along the shelf and local forcing within the Florida Strait are of minor importance.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 . pp. 725-747.
    Publikationsdatum: 2018-04-12
    Beschreibung: The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived. These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents and (iii) a concise treatment of both the kinematic and viscous boundary conditions at the sea surface. Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through the surface that are implicit in previous studies of the wave-induced modification of the classical Ekman spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with the so-called virtual wave stress of Longuet-Higgins. Overall the TWM framework can be regarded as an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover the TWM framework can be used to include the residual effect of surface waves in large-scale circulation models. In specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable, the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean velocity.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-01-23
    Beschreibung: Eden and Olbers have discussed the relationship between bottom pressure torque and bolus velocity in the western boundary current using the vertically truncated BARBI model approach. Here we revisit this issue using the much simpler residual mean framework. The central role played by a density equation that is linearised about a state of rest is discussed, as well as mechanisms required to maintain the baroclinicity of the western boundary current. We conclude that in the framework being considered by Eden and Olbers, frictional processes must play an important role in the western boundary current dynamics, otherwise the baroclinicity of the current is completely removed by the cross-front mixing effect of the eddies. We also derive the form of the Stommel equation obtained by Eden and Olbers in a manner which clarifies the approximations made by these authors. We argue that for their analysis to be valid, the flow must be concentrated in a shallow layer compared to the ocean depth, there must be no density structure at the sea floor, and any overturning circulation, whether directly wind-driven or as a part of the global thermohaline circulation, must be much smaller than the western boundary current transport.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 . pp. 149-164.
    Publikationsdatum: 2018-04-12
    Beschreibung: Previous attempts to derive the depth-dependent expression of the radiation stress have lead to a debate concerning (i) the applicability of Mellor’s approach to a sloping bottom, (ii) the introduction of the delta function at the mean sea surface in the later papers by Mellor, and (iii) a wave-induced pressure term derived in several recent studies. The authors use an equation system in vertically Lagrangian and horizontally Eulerian (VL) coordinates suitable for a concise treatment of the surface boundary, and obtain an expression for the depth-dependent radiation stress that is consistent with the vertically-integrated expression given by Longuet-Higgins and Stewart. Concerning (i)-(iii) in the above, the difficulty of handling a sloping bottom disappears when wave-averaged momentum equations in the VL coordinates are written for the development of (not the Lagrangian mean velocity but) the Eulerian mean velocity. There is also no delta function at the sea surface in the expression for the depth-dependent radiation stress. The connection between the wave-induced pressure term in the recent studies and the depth-dependent radiation stress term is easily shown by rewriting the pressure-based form stress term in the thickness-weighted-mean (TWM) momentum equations as a velocity-based term which contains the time derivative of the pseudomomentum in the TWM framework.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 26 . pp. 7650-7661.
    Publikationsdatum: 2020-08-04
    Beschreibung: The use of a coupled ocean/atmosphere/sea-ice model to hindcast (i.e. historical forecast) recent climate variability is described and illustrated for the cases of the 1976/77 and 1998/99 climate shift events in the Pacific. The initialization is achieved by running the coupled model in partially coupled mode whereby global observed wind stress anomalies are used to drive the ocean/sea-ice component of the coupled model while maintaining the thermodynamic coupling between the ocean/sea-ice and atmosphere components. Here we show that hindcast experiments can successfully capture many features associated with the 1976/77 and 1998/99 climate shifts. For instance, hindcast experiments started from the beginning of 1976 can capture sea surface temperature (SST) warming in the central-eastern equatorial Pacific and the positive phase of the Pacific Decadal Oscillation (PDO) throughout the 9 years following the 1976/77 climate shift, including the deepening of the Aleutian low pressure system. Hindcast experiments started from the beginning of 1998 can also capture part of the anomalous conditions during the 4 years after the 1998/99 climate. We argue that the dynamical adjustment of heat content anomalies that are present in the initial conditions in the tropics is important for the successful hindcast of the two climate shifts.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Taylor & Francis
    In:  Atmosphere-Ocean, 51 (2). pp. 213-225.
    Publikationsdatum: 2019-09-23
    Beschreibung: We present a new method for the statistical downscaling of coarse-resolution General Circulation Model (GCM) fields to predict local climate change. Most atmospheric variables have strong seasonal cycles. We show that the prediction of the non-seasonal variability of maximum and minimum daily surface temperature is improved if the seasonal cycle is removed prior to the statistical analysis. The new method consists of three major steps. First, the average seasonal cycles of both predictands and predictors are removed. Second, a principal component-based multiple linear regression model between the deseasonalized predictands and predictors is developed and validated. Finally, the regression is used to make projections of future changes in maximum and minimum daily surface temperature at Shearwater, Nova Scotia. This projection is made using the local grid-scale variables of the Canadian General Circulation Model Version 3 (CGCM3) climate model as predictors. Our statistical downscaling method indicates significant skill in predicting the observed distribution of temperature using GCM predictors. Projections suggest minimum and maximum temperatures at Shearwater will be up to about five degrees warmer by 2100 under the current “business-as-usual” scenario. RÉSUMÉ [Traduit par la rédaction] Nous présentons une nouvelle méthode pour la réduction d'échelle statistique des champs des modèles de circulation générale (MCG) à faible résolution pour prévoir les changements du climat local. La plupart des variables atmosphériques ont des cycles saisonniers bien marqués. Nous démontrons que la prédiction de la variabilité non saisonnière de la température de surface quotidienne minimum et maximum est meilleure si on retranche le cycle saisonnier avant de procéder à l'analyse statistique. Voici les trois grandes étapes de cette nouvelle méthode. D'abord, nous retirons les cycles saisonniers moyens des prédictants et des prédicteurs. Ensuite, nous concevons et validons un modèle de régression linéaire multiple sur composantes principales entre les prédictants et les prédicteurs désaisonnalisés. Enfin, nous nous servons de la régression afin d'établir des projections pour les changements à venir dans la température de surface quotidienne minimum et maximum à Shearwater en Nouvelle-Écosse. Cette projection est établie au moyen des variables locales à l'échelle du maillage de la troisième version du modèle canadien de circulation générale (MCCG3). Notre méthode de réduction d'échelle statistique se révèle très efficace pour prédire la répartition observée de la température au moyen des prédicteurs du MCG. D'après les projections, les températures minimum et maximum à Shearwater connaîtront une augmentation d'environ cinq degrés d'ici 2100 dans le scénario actuel de type « statu quo ».
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-09-23
    Beschreibung: Highlights: • Global mean sea level simulated in interannual CORE simulations. • Regional sea level patterns simulated in interannual CORE simulations. • Theoretical foundation for analysis of global mean sea level and regional patterns. Abstract: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (1). pp. 3-23.
    Publikationsdatum: 2018-04-12
    Beschreibung: There is an ongoing discussion in the community concerning the wave-averaged momentum equations in the hybrid vertically Lagrangian and horizontally Eulerian (VL) framework and, in particular, the form stress term (representing the residual effect of pressure perturbations) which is thought to restrict the handling of higher order waves in terms of a perturbation expansion. The present study shows that the traditional pressure-based form stress term can be transformed into a set of terms that do not contain any pressure quantities but do contain the time derivative of a wave-induced velocity. This wave-induced velocity is referred to as the pseudomomentum in the VL framework, as it is analogous to the generalized pseudomomentum in Andrews and McIntyre. This enables the second expression for the wave-averaged momentum equations in the VL framework (this time for the development of the total transport velocity minus the VL pseudomomentum) to be derived together with the vortex force. The velocity-based expression of the form stress term also contains the residual effect of the turbulent viscosity, which is useful for understanding the dissipation of wave energy leading to transfer of momentum from waves to circulation. It is found that the concept of the virtual wave stress of Longuet-Higgins is applicable to quite general situations: it does not matter whether there is wind forcing or not, the waves can have slow variations, and the viscosity coefficient can vary in the vertical. These results provide a basis for revisiting the surface boundary condition used in numerical circulation models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (6). pp. 2264-2279.
    Publikationsdatum: 2020-08-04
    Beschreibung: The dynamical origin of the spectral and autocorrelation structure of annular variability in the troposphere is investigated by a deductive approach. Specifically, the structure of the power spectrum and autocorrelation function of the zonal-mean geopotential is analyzed for the case of a quasigeostrophic spherical atmosphere subject to a white noise mechanical forcing applied in a single Hough mode and concentrated at a particular level in the vertical, with vertically uniform Newtonian cooling and Rayleigh drag concentrated at a rigid lower boundary. Analytic expressions for the power spectrum are presented together with expressions for an approximate red noise (i.e., a Lorentzian-shaped) power spectrum. It is found that for an infinitely deep atmosphere the power spectrum can be well approximated by a red noise process for the first few Hough modes (associated with large Rossby heights), provided the distance from the forcing is not larger than about one Rossby height. When a frictional rigid lower boundary is included, however, the approximation is generally bad. The high-frequency part of the power spectrum exhibits near-exponential behavior and the autocorrelation function shows a transition from a rapid decay at short lags to a much slower decay at longer lags, if the thermal and mechanical damping time scales are sufficiently well separated. Since observed annular variability exhibits the same characteristics, the above results lead to the hypothesis that these characteristics may, to some extent, be intrinsic to the linear zonal-mean response problem—although the need for an additional contribution from eddy feedbacks is also implied by the results.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 . pp. 2485-2497.
    Publikationsdatum: 2020-08-04
    Beschreibung: A representation of an equatorial basin mode excited in a shallow water model for a single high order baroclinic vertical normal mode is used as a simple model for the equatorial deep jets. The model is linearized about both a state of rest and a barotropic mean flow corresponding to the observed Atlantic Equatorial Intermediate Current System. We found that the eastward mean flow associated with the North and South Intermediate Counter Currents (NICC and SICC, respectively) effectively shields the Equator from off-equatorial Rossby waves. The westward propagation of these waves is blocked and focusing on the Equator due to beta dispersion is prevented. This leads to less energetic jets along the Equator. On the other hand, the westward barotropic mean flow along the Equator reduces the gradient of absolute vorticity and hence widens the cross-equatorial structure of the basin mode. Increasing lateral viscosity predominantly affects the width of the basin modes’ Kelvin wave component in the presence of the mean flow while the Rossby wave is confined by the flanking NICC and SICC. Independent of the presence of the mean flow, the application of sufficient lateral mixing also hinders the focusing of off-equatorial Rossby waves, which is hence an unlikely feature of a low-frequency basin mode in the real ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...