ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (13)
  • AGU (American Geophysical Union)  (7)
  • Elsevier  (5)
  • Wiley  (5)
  • SpringerOpen
  • 2010-2014  (13)
Sammlung
  • Weitere Quellen  (13)
Datenquelle
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 2761-2773.
    Publikationsdatum: 2018-02-27
    Beschreibung: A realistic primitive-equation model of the Southern Ocean at eddying spatial resolution is used to examine the effect of ocean-surface-velocity dependence of the wind stress on the strength of near-inertial oscillations. Accounting for the ocean-surface-velocity dependence of the wind stress leads to a large reduction of wind-induced near-inertial energy of approximately 40 percent and of wind power input into the near-inertial frequency band of approximately 20 percent. A large part of this reduction can be explained by the leading-order modification to the wind stress if the ocean-surface velocity is included. The strength of the reduction is shown to be modulated by the inverse of the ocean-surface-mixed-layer depth. We conclude that the effect of surface-velocity dependence of the wind stress should be taken into account when estimating the wind-power input into the near-inertial frequency band and when estimating near-inertial energy levels in the ocean due to wind forcing.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-01-23
    Beschreibung: Eden and Olbers have discussed the relationship between bottom pressure torque and bolus velocity in the western boundary current using the vertically truncated BARBI model approach. Here we revisit this issue using the much simpler residual mean framework. The central role played by a density equation that is linearised about a state of rest is discussed, as well as mechanisms required to maintain the baroclinicity of the western boundary current. We conclude that in the framework being considered by Eden and Olbers, frictional processes must play an important role in the western boundary current dynamics, otherwise the baroclinicity of the current is completely removed by the cross-front mixing effect of the eddies. We also derive the form of the Stommel equation obtained by Eden and Olbers in a manner which clarifies the approximations made by these authors. We argue that for their analysis to be valid, the flow must be concentrated in a shallow layer compared to the ocean depth, there must be no density structure at the sea floor, and any overturning circulation, whether directly wind-driven or as a part of the global thermohaline circulation, must be much smaller than the western boundary current transport.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (17). L17801.
    Publikationsdatum: 2017-06-20
    Beschreibung: The tropical impact on the East Asian winter monsoon (EAWM) is examined in an ensemble of atmospheric general circulation model runs that use relaxation towards the ERA-40 reanalysis in the tropics for winters between 1960/61 and 2001/02 and performed with a recent version of the European Centre for Medium-Range Weather Forecasts model. 25% of the interannual variance of the EAWM can be reproduced in the ensemble mean by the model experiments with relaxation, even though the influence from ENSO appears to be weak. The implication is that there is the possibility of enhanced predictability for the EAWM resulting from improved forecast skill in the tropics as a whole. Prescribing observed sea surface temperature and sea ice without using relaxation cannot reproduce the interannual variability of the EAWM in our experiments, questioning the usefulness of uncoupled atmosphere models in this region, consistent with previous studies. Key Points: - Tropical impact on interannual variability of the East Asian winter monsoon. - Tropical influence and extratropical SST and sea-ice matter for the trend. - AGCMs driven only by observed SST and sea-ice give poor results.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (L13809).
    Publikationsdatum: 2019-07-09
    Beschreibung: A relaxation technique applied to the ECMWF model is used to analyse 11, 21 and 31 year trends in the boreal winter mean 500 hPa North Atlantic Oscillation (NAO), Pacific North America pattern (PNA) and Southern Annular Mode (SAM) indices. For the PNA, the results indicate a strong influence from the tropics on all time scales, whereas for the NAO, the stratosphere is important on time scales of 11 and 21 but with an indication of feedback from extratropical sea surface temperature and sea-ice (SSTSI) anomalies on the 11 year time scale. For the SAM, the tropics emerge as the most important influence. We find an influence from the stratosphere consistent with expectations based on ozone depletion, although no clear role for stratospheric forcing of the SAM is found in these experiments.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-09-23
    Beschreibung: Equatorial deep jets (EDJs) are a prominent flow feature of the equatorial Atlantic below the Equatorial Undercurrent down to about 3000 m. Here we analyze long-term moored velocity and oxygen observations, as well as shipboard hydrographic and current sections acquired along 23{degree sign}W and covering the depth range of the oxygen minimum zones of the eastern tropical North and South Atlantic. The moored zonal velocity data show high-baroclinic mode EDJ oscillations at a period of about 4.5 years. Equatorial oxygen observations which do not resolve or cover a full 4.5-yr EDJ cycle nevertheless reveal large variability, with oxygen concentrations locally spanning a range of more than 60 μmol kg−1. We study the effect of EDJs on the equatorial oxygen concentration by forcing an advection-diffusion model with the velocity field of the gravest equatorial basin mode corresponding to the observed EDJ cycle. The advection-diffusion model includes an oxygen source at the western boundary and oxygen consumption elsewhere. The model produces a 4.5-yr cycle of the oxygen concentration and a temporal phase difference between oxygen concentration and eastward velocity that is less than quadrature, implying a net eastward oxygen flux. The comparison of available observations and basin-mode simulations indicates that a substantial part of the observed oxygen variability at the equator can be explained by EDJ oscillations. The respective role of mean advection, EDJs, and other possible processes in shaping the mean oxygen distribution of the equatorial Atlantic at intermediate depth is discussed. Key Points: - Equatorial Deep Jets strongly affect oxygen distribution/variability - Mean oxygen ditribution in the equatorial Atlantic at intermediate depth - Gravest equatorial basin mode forces an advection-diffusion model
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Wiley
    In:  Atmospheric Science Letters, 14 (1). pp. 14-19.
    Publikationsdatum: 2019-09-23
    Beschreibung: We report on model experiments that support the hypothesis that the second mode of variability of the East Asian Summer Monsoon is influenced by the variability of the Indian Summer Monsoon. The results suggest that the recent trend towards drier conditions in northern China in summer is, at least partly, a consequence of the synchronous drying trend over India in summer noted by some authors.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (10). pp. 3643-3648.
    Publikationsdatum: 2017-04-10
    Beschreibung: A link between atmospheric variability in the Tropics independent of ENSO and the Southern Annular Mode (SAM) is found based on seasonal mean data for austral summer. Variations associated with El Niño Southern Oscillation (ENSO) are removed usinga linear method and a Tropics Index (TI) is defined as the zonal average of the ENSO-removed 500 hPa geopotential height between 10°S and 10°N. Since the detrended TI shows no link to SST variability in the Tropics, it appears to be related to internal atmospheric variability. We find that the TI can explain about 40% variance of the SAM interannual variability and about 75% of the SAM long term trend between 1957/58 and 2001/02, where here the SAM includes the ENSO signal. Positive/negative values of the TI are associated with the positive/negative SAM. A possible link between the TI and global warming is noted.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-09-23
    Beschreibung: Highlights: • Global mean sea level simulated in interannual CORE simulations. • Regional sea level patterns simulated in interannual CORE simulations. • Theoretical foundation for analysis of global mean sea level and regional patterns. Abstract: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 1-16.
    Publikationsdatum: 2018-02-27
    Beschreibung: A regional ocean circulation model (ROMS) is used to simulate the Chinese land-derived sediment transport in the Bohai Sea, Yellow Sea, and East China Sea (BYECS). The model includes the effect of currents, tides, and waves on the sediment transport and is used to study the pathway and dynamic mechanisms of the fine-grain sediment transport from the Huanghe River (Yellow River), the Old Huanghe Delta, and the Changjiang River (Yangtze River) in the BYECS. The seasonal variability of the sediment transport in the BYECS and the sources of the Yellow Sea Trough mud patch, the mud patch southwest of Cheju Island, the mud patch offshore from the Zhejiang and Fujian provinces and the Okinawa Trough mud patch are discussed. The results show that the Huanghe River sediment can be transported to the Yellow Sea Trough, but little makes it to the outer shelf while the Old Huanghe Delta sediment is mainly transported to the Yellow Sea Trough. Most of the sediment from the Changjiang River mouth is carried to the mud patch off the coast of the Zhejiang and Fujian provinces but with part of this sediment also transported to the Yellow Sea Trough. The model shows that it is difficult to transport land-derived sediment to the Okinawa Trough mud patch under normal conditions. The model also has difficulty accounting for the deposition of sediment in the region to the southwest of Cheju Island and offshore from the Zhejiang and Fujian provinces, an issue requiring further study.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-09-23
    Beschreibung: Highlights: • North Atlantic sea surface temperature exhibits high decadal predictability potential. • Model bias hinders exploiting the decadal predictability potential. • An innovative method was developed to overcome some of the bias problem. • North Atlantic sea surface temperature will stay anomalously warm until about 2030. Abstract: The Atlantic Meridional Overturning Circulation (AMOC), a major current system in the Atlantic Ocean, is thought to be an important driver of climate variability, both regionally and globally and on a large range of time scales from decadal to centennial and even longer. Measurements to monitor the AMOC strength have only started in 2004, which is too short to investigate its link to long-term climate variability. Here the surface heat flux-driven part of the AMOC during 1900–2010 is reconstructed from the history of the North Atlantic Oscillation, the most energetic mode of internal atmospheric variability in the Atlantic sector. The decadal variations of the AMOC obtained in that way are shown to precede the observed decadal variations in basin-wide North Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO) which strongly impacts societally important quantities such as Atlantic hurricane activity and Sahel rainfall. The future evolution of the AMO is forecast using the AMOC reconstructed up to 2010. The present warm phase of the AMO is predicted to continue until the end of the next decade, but with a negative tendency.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...