ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-25
    Description: Author(s): Kohta Murase, Basudeb Dasgupta, and Todd A. Thompson Rotating and magnetized protoneutron stars may drive relativistic magnetocentrifugally accelerated winds as they cool immediately after core collapse. The wind fluid near the star is composed of neutrons and protons, and the neutrons become relativistic while collisionally coupled with the ions. Her... [Phys. Rev. D 89, 043012] Published Mon Feb 24, 2014
    Keywords: Astrophysics
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN1816 , SPIE Astronomical Instrumentation Conference; Jun 27, 2010 - Jul 02, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We give an overview of the operational concepts and architecture of the Kepler Science Data Pipeline. Designed, developed, operated, and maintained by the Science Operations Center (SOC) at NASA Ames Research Center, the Kepler Science Data Pipeline is central element of the Kepler Ground Data System. The SOC charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Data Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center that hosts the computers required to perform data analysis. We discuss the high-performance, parallel computing software modules of the Kepler Science Data Pipeline that perform transit photometry, pixel-level calibration, systematic error-correction, attitude determination, stellar target management, and instrument characterization. We explain how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Data Pipeline.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN1818 , SPIE Astronomical Instrumentation Conference; Jun 27, 2010 - Jul 02, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for several types of dielectric and composite materials based on this model which spans three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN15905 , Spacecraft Charging Technology Conference; Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for several types of dielectric and composite materials based on this model which spans three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN15907 , Spacecraft Charging Technology Conference; Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...