ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-26
    Description: Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veselka, Nina -- McErlain, David D -- Holdsworth, David W -- Eger, Judith L -- Chhem, Rethy K -- Mason, Matthew J -- Brain, Kirsty L -- Faure, Paul A -- Fenton, M Brock -- MOP-89852/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Feb 18;463(7283):939-42. doi: 10.1038/nature08737. Epub 2010 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Robarts Research Institute.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20098413" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Bone Conduction/*physiology ; Bone and Bones/anatomy & histology/*physiology ; Chiroptera/*anatomy & histology/classification/*physiology ; Ear/anatomy & histology/physiology ; Echolocation/*physiology ; Flight, Animal/physiology ; Fossils ; Larynx/*physiology ; Orientation/physiology ; Skull/anatomy & histology/physiology ; Tongue/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-16
    Description: Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3alphabeta(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmeisser, Michael J -- Ey, Elodie -- Wegener, Stephanie -- Bockmann, Juergen -- Stempel, A Vanessa -- Kuebler, Angelika -- Janssen, Anna-Lena -- Udvardi, Patrick T -- Shiban, Ehab -- Spilker, Christina -- Balschun, Detlef -- Skryabin, Boris V -- Dieck, Susanne tom -- Smalla, Karl-Heinz -- Montag, Dirk -- Leblond, Claire S -- Faure, Philippe -- Torquet, Nicolas -- Le Sourd, Anne-Marie -- Toro, Roberto -- Grabrucker, Andreas M -- Shoichet, Sarah A -- Schmitz, Dietmar -- Kreutz, Michael R -- Bourgeron, Thomas -- Gundelfinger, Eckart D -- Boeckers, Tobias M -- England -- Nature. 2012 Apr 29;486(7402):256-60. doi: 10.1038/nature11015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699619" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Autistic Disorder/*genetics/pathology ; Behavior, Animal/*physiology ; Dendritic Spines/genetics ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Psychomotor Agitation/*genetics/pathology ; Receptors, Ionotropic Glutamate/metabolism ; Synapses/metabolism ; Up-Regulation ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-21
    Description: Quantifying cell behaviors in animal early embryogenesis remains a challenging issue requiring in toto imaging and automated image analysis. We designed a framework for imaging and reconstructing unstained whole zebrafish embryos for their first 10 cell division cycles and report measurements along the cell lineage with micrometer spatial resolution and minute temporal accuracy. Point-scanning multiphoton excitation optimized to preferentially probe the innermost regions of the embryo provided intrinsic signals highlighting all mitotic spindles and cell boundaries. Automated image analysis revealed the phenomenology of cell proliferation. Blastomeres continuously drift out of synchrony. After the 32-cell stage, the cell cycle lengthens according to cell radial position, leading to apparent division waves. Progressive amplification of this process is the rule, contrasting with classical descriptions of abrupt changes in the system dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olivier, Nicolas -- Luengo-Oroz, Miguel A -- Duloquin, Louise -- Faure, Emmanuel -- Savy, Thierry -- Veilleux, Israel -- Solinas, Xavier -- Debarre, Delphine -- Bourgine, Paul -- Santos, Andres -- Peyrieras, Nadine -- Beaurepaire, Emmanuel -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):967-71. doi: 10.1126/science.1189428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Palaiseau, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724640" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/cytology ; Cell Cycle ; *Cell Lineage ; Embryo, Nonmammalian/*cytology ; Image Processing, Computer-Assisted ; Microscopy/*methods ; Zebrafish/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-19
    Description: Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barik, Jacques -- Marti, Fabio -- Morel, Carole -- Fernandez, Sebastian P -- Lanteri, Christophe -- Godeheu, Gerard -- Tassin, Jean-Pol -- Mombereau, Cedric -- Faure, Philippe -- Tronche, Francois -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):332-5. doi: 10.1126/science.1226767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics, Neurophysiology and Behavior Group, Centre National de la Recherche Scientifique (CNRS) Unite Mixte de Recherche (UMR) 7224, Paris, France. jacques.barik@snv.jussieu.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/*metabolism ; Dopamine/*metabolism ; Dopaminergic Neurons/*metabolism ; Fear ; Mice ; Mice, Mutant Strains ; Receptors, Dopamine/metabolism ; Receptors, Glucocorticoid/genetics/*metabolism ; *Social Alienation ; *Social Isolation ; Stress, Psychological/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-11
    Description: Many bacterial pathogens cause persistent infections despite repeated antibiotic exposure. Bacterial persisters are antibiotic-tolerant cells, but little is known about their growth status and the signals and pathways leading to their formation in infected tissues. We used fluorescent single-cell analysis to identify Salmonella persisters during infection. These were part of a nonreplicating population formed immediately after uptake by macrophages and were induced by vacuolar acidification and nutritional deprivation, conditions that also induce Salmonella virulence gene expression. The majority of 14 toxin-antitoxin modules contributed to intracellular persister formation. Some persisters resumed intracellular growth after phagocytosis by naive macrophages. Thus, the vacuolar environment induces phenotypic heterogeneity, leading to either bacterial replication or the formation of nonreplicating persisters that could provide a reservoir for relapsing infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helaine, Sophie -- Cheverton, Angela M -- Watson, Kathryn G -- Faure, Laura M -- Matthews, Sophie A -- Holden, David W -- 095484/Wellcome Trust/United Kingdom -- MR/K027077/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Jan 10;343(6167):204-8. doi: 10.1126/science.1244705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24408438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Antitoxins/genetics ; Bacterial Toxins/genetics ; Cefotaxime/pharmacology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Lymph Nodes/immunology/microbiology ; Macrophages/*microbiology ; Mesentery/immunology/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Operon/genetics ; Phagocytosis ; Pyrophosphatases/genetics ; Recurrence ; Salmonella Infections/*immunology/*microbiology ; Salmonella typhimurium/drug effects/genetics/*growth & development ; Spleen/immunology/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...