ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-22
    Description: Author(s): Chandana Mondal and Surajit Sengupta We report computer simulation studies of the kinetics of ordering of a two-dimensional system of particles on a template with a one-dimensional periodic pattern. In equilibrium, one obtains a reentrant liquid-solid-liquid phase transition as the strength of the substrate potential is varied. We show... [Phys. Rev. E 85, 020402] Published Tue Feb 21, 2012
    Keywords: Colloidal dispersions, suspensions, and aggregates
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-19
    Description: Author(s): D. Wilms, P. Virnau, S. Sengupta, and K. Binder Langevin dynamics simulations are used to study the effect of shear on a two-dimensional colloidal crystal (with implicit solvent) confined by structured parallel walls. When walls are sheared very slowly, only two or three crystalline layers next to the walls move along with them, while the inner l... [Phys. Rev. E 85, 061406] Published Mon Jun 18, 2012
    Keywords: Colloidal dispersions, suspensions, and aggregates
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-24
    Description: The multi-component mechanistic target of rapamycin complex 1 (mTORC1) kinase is the central node of a mammalian pathway that coordinates cell growth with the availability of nutrients, energy and growth factors. Progress has been made in the identification of mTORC1 pathway components and in understanding their functions in cells, but there is relatively little known about the role of the pathway in vivo. Specifically, we have little knowledge regarding the role mTOCR1 has in liver physiology. In fasted animals, the liver performs numerous functions that maintain whole-body homeostasis, including the production of ketone bodies for peripheral tissues to use as energy sources. Here we show that mTORC1 controls ketogenesis in mice in response to fasting. We find that liver-specific loss of TSC1 (tuberous sclerosis 1), an mTORC1 inhibitor, leads to a fasting-resistant increase in liver size, and to a pronounced defect in ketone body production and ketogenic gene expression on fasting. The loss of raptor (regulatory associated protein of mTOR, complex 1) an essential mTORC1 component, has the opposite effects. In addition, we find that the inhibition of mTORC1 is required for the fasting-induced activation of PPARalpha (peroxisome proliferator activated receptor alpha), the master transcriptional activator of ketogenic genes, and that suppression of NCoR1 (nuclear receptor co-repressor 1), a co-repressor of PPARalpha, reactivates ketogenesis in cells and livers with hyperactive mTORC1 signalling. Like livers with activated mTORC1, livers from aged mice have a defect in ketogenesis, which correlates with an increase in mTORC1 signalling. Moreover, we show that the suppressive effects of mTORC1 activation and ageing on PPARalpha activity and ketone production are not additive, and that mTORC1 inhibition is sufficient to prevent the ageing-induced defect in ketogenesis. Thus, our findings reveal that mTORC1 is a key regulator of PPARalpha function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sengupta, Shomit -- Peterson, Timothy R -- Laplante, Mathieu -- Oh, Stephanie -- Sabatini, David M -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-04/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 23;468(7327):1100-4. doi: 10.1038/nature09584.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179166" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; Fasting/*metabolism ; *Gene Expression Regulation ; Humans ; Ketone Bodies/*biosynthesis/metabolism ; Liver/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiprotein Complexes ; Nuclear Receptor Co-Repressor 1/metabolism ; PPAR alpha/antagonists & inhibitors/metabolism ; Proteins/genetics/*metabolism ; TOR Serine-Threonine Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-12
    Description: Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, we demonstrate that erasure of CpG methylation (5mC) in PGCs occurs via conversion to 5-hydroxymethylcytosine (5hmC), driven by high levels of TET1 and TET2. Global conversion to 5hmC initiates asynchronously among PGCs at embryonic day (E) 9.5 to E10.5 and accounts for the unique process of imprint erasure. Mechanistically, 5hmC enrichment is followed by its protracted decline thereafter at a rate consistent with replication-coupled dilution. The conversion to 5hmC is an important component of parallel redundant systems that drive comprehensive reprogramming in PGCs. Nonetheless, we identify rare regulatory elements that escape systematic DNA demethylation in PGCs, providing a potential mechanistic basis for transgenerational epigenetic inheritance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847602/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847602/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hackett, Jamie A -- Sengupta, Roopsha -- Zylicz, Jan J -- Murakami, Kazuhiro -- Lee, Caroline -- Down, Thomas A -- Surani, M Azim -- 079249/Wellcome Trust/United Kingdom -- 083089/Wellcome Trust/United Kingdom -- 083563/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- RG44593/Wellcome Trust/United Kingdom -- RG49135/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):448-52. doi: 10.1126/science.1229277. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223451" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; CpG Islands ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; DNA-Binding Proteins/genetics/metabolism ; Embryo, Mammalian/*metabolism ; Embryonic Development ; *Epigenesis, Genetic ; Female ; *Genomic Imprinting ; Germ Cells/*metabolism ; Germ Layers/cytology ; Male ; Mice ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/metabolism ; RNA-Binding Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-23
    Description: How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells-an ectoenzyme that produces the paracrine factor cyclic ADP ribose-mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yilmaz, Omer H -- Katajisto, Pekka -- Lamming, Dudley W -- Gultekin, Yetis -- Bauer-Rowe, Khristian E -- Sengupta, Shomit -- Birsoy, Kivanc -- Dursun, Abdulmetin -- Yilmaz, V Onur -- Selig, Martin -- Nielsen, G Petur -- Mino-Kenudson, Mari -- Zukerberg, Lawrence R -- Bhan, Atul K -- Deshpande, Vikram -- Sabatini, David M -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 28;486(7404):490-5. doi: 10.1038/nature11163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722868" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-ribosyl Cyclase/metabolism ; Animals ; Antigens, CD/metabolism ; Caloric Restriction ; Cell Count ; Cell Division/drug effects ; Cyclic ADP-Ribose/metabolism ; Energy Intake/*physiology ; Female ; GPI-Linked Proteins/agonists/metabolism ; Intestines/*cytology ; Longevity/physiology ; Male ; Mice ; Multiprotein Complexes ; Paneth Cells/*cytology/drug effects/*metabolism ; Paracrine Communication ; Proteins/antagonists & inhibitors/*metabolism ; Regeneration/drug effects ; Signal Transduction ; Sirolimus/pharmacology ; Stem Cell Niche/drug effects/*physiology ; Stem Cells/*cytology/drug effects/*metabolism ; TOR Serine-Threonine Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol amount are described. These uncertainties and the statistics of the agreement between the measurements and new satellite estimates are also reviewed and compared to other solar data sets. Findings and Conclusions: Preliminary results show that insolation values show an overall small bias (less than 1%) with a RMS of 25% relative to surface measurements. Exceptions at certain locations were found and will be discussed relative to the uncertainties identified above. Lastly, we will identify the next steps in the development and improvement of this production system including some accuracy goals in preparation for ultimate delivery to NREL.
    Keywords: Meteorology and Climatology
    Type: NF1676L-21915 , International Conference on Energy and Meteorology (ICEM) 2015; Jun 22, 2015 - Jun 26, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This paper describes an ongoing project to provide the National Renewable Energy Laboratory (NREL) with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and to provide a mechanism for continual updates. This new production system is made possible by the efforts of NASA and NOAA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 10 km, 3-hourly basis beginning July 1983. We provide a general overview of this project, samples of the new solar irradiance mapped data products, and comparisons to surface measurements. Samples of the use of the SUNY-Albany solar irradiance algorithm applied to the ISCCP data show very good agreement with high quality surface measurements. We identify the next steps in the production of the data set.
    Keywords: Meteorology and Climatology
    Type: NF1676L-16442 , SOLAR 2013; Apr 16, 2013 - Apr 20, 2013; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...