ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
  • 2010-2014  (3)
  • 1955-1959
Collection
Years
Year
  • 1
    Publication Date: 2014-05-09
    Description: Daphnia responds to low availability of carbon (food quantity) or limiting concentrations of nutrients relative to carbon (C) in excess (food quality) by respectively saving or discharging C via different pathways. We investigated which kind of food limitation leads to a faster regulation in Daphnia C budgets, and whether the pre-assimilative C pathways, ingestion and faeces egestion and the post-assimilative C pathways, excretion and respiration, are regulated concurrently. Daphnia magna were exposed to dietary shifts in different food quantities or qualities; food quality was varied in terms of the essential component, cholesterol. After acclimation to the new diet ranging from 0 to 96 h, C budgets were measured by a radiotracer technique. Dietary shifts in quantity and quality caused Daphnia to quickly adjust their C budgets within 6 h, but different C pathways were affected. A shift to low food quantity reduced Daphnia respiration indicating C retention. In contrast, sudden low quality food caused increased faeces egestion to discharge excess C. Furthermore, we observed a delayed increase in excretion but no change in respiration within the time frame studied. Such time-shifted responses appear to be an appropriate means to keep the costs of physiological adjustments relatively low, which in turn would benefit Daphnia performance.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-28
    Description: In aquatic food webs, consumers, such as daphnids and copepods, differ regarding their accumulation of polyunsaturated fatty acids (PUFAs). We tested if the accumulation of PUFAs in a seston size fraction containing different consumers and in Daphnia as a separate consumer is subject to seasonal changes in a large deep lake due to changes in the dietary PUFA supply and specific demands of different consumers. We found that the accumulation of arachidonic acid (ARA) in Daphnia increased from early summer to late summer and autumn. However, ARA requirements of Daphnia appeared to be constant throughout the year, because the accumulation of ARA increased when the dietary ARA supply decreased. In the size fraction 〉140 µm, we found an increased accumulation of docosahexaenoic acid (DHA) during late summer and autumn. These seasonal changes in DHA accumulation were linked to changes in the proportion of copepods in this size fraction, which may have increasingly accumulated DHA for active overwintering. We show that consumer-specific PUFA demands can result in seasonal changes in PUFA accumulation, which may influence the trophic transfer of PUFAs within the food web.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-06
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...