ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (6)
  • 2010-2014  (6)
  • 1965-1969
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2011-11-15
    Description: This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: The fixed anvil temperature (FAT) hypothesis is examined based on the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)-based cloud-top temperature (CTT) in conjunction with the tropical atmospheric profiles and sea surface temperature (SST) from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis. Consistent with the physical governing mechanism of the FAT hypothesis, the peak clear-sky diabatic subsidence and convergence profiles are located at roughly the same level (200 hPa) as the peak in the cloud profile, which is fundamentally determined by the rapid decrease of water vapor concentration above this level. The geographical maxima of cloud fraction agree well with those of water vapor, clear-sky cooling rates, and diabatic convergence at 200 hPa. The use of direct CTT measurements suggests the CTT in specific Pacific basins exhibit different characteristics as the frequency distribution of the tropical SST varies from boreal winter to summer. When averaging over the tropics as a whole, the CTT distributions are approximately unchanged primarily because of cancellation by the variations associated with individual regions. An analysis of the response of the tropical mean CTT anomaly time series to the SST indicates that a possible negative relationship is present, whereas the relationship tends to be positive over the tropical western Pacific and Indian Oceans. In addition, it is suggested to interpret the FAT hypothesis, and the more recent proportionately higher anvil temperature (PHAT) hypothesis, by using the temperature at the maximum cloud detrainment level instead of the CTT.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-01
    Description: The regional coupled climate–chemistry/aerosol model (RegCM3) is used to investigate the difference in the spatial distribution of aerosol optical depth (AOD) between a strong summer monsoon year (SSMY; July 2003) and a weak summer monsoon year (WSMY; July 2002) under the actual- and same-emission scenarios. It is shown that the intensity of the Asian summer monsoon is primarily responsible for the AOD spatial distribution anomaly in midsummer over East Asia. Specifically, the AOD over southern China, upwind of the Asian summer monsoon, is greater in WSMY than in SSMY, but the opposite is observed for the AOD downwind over northern China and the Korean Peninsula. The AOD spatial distribution patterns simulated on the basis of the actual emission inventories for the SSMY and WSMY do not substantially differ from their counterparts that are based on the same emission inventory, confirming that the monsoon circulation, rather than local emissions or dry and wet deposition processes, is the predominant factor determining the regional AOD distribution. These modeling results are consistent with the analyses based on the Moderate Resolution Imaging Spectroradiometer (MODIS) products, NCAR–Department of Energy wind fields, and air parcel movements according to the 7-day trajectories of air parcels determined by the Hybrid Single-Particle Lagrangian Integrated Trajectory model.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-01
    Description: The spatial and temporal variations of aerosol loading over eastern Asia specified in terms of the aerosol optical depth (AOD) at the 550-nm wavelength during July are examined in conjunction with the intensity of the Indian summer monsoon. AOD derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, gridded reanalyses, and ground-based measurements are used in the analysis. Two contrasting years, 2002 and 2003, which represent weak and active Indian summer monsoon events, respectively, are selected for the study, with a focus on an eastern Asian southern subregion (SR; 23°–32°N, 105°–120°E) and an eastern Asian northern subregion (NR; 35°–44°N, 115°–130°E). It is shown that the interannual variation of July mean wind intensity is a major factor in regulating the midsummer spatial pattern of aerosols over eastern Asia when the Indian monsoon index is anomalously large. The AOD anomalies in the NR and SR are positive and negative, respectively, during an active monsoon year, whereas the opposite is observed during a weak monsoon year. The variation patterns of less cloudy-day visibility, observed at four meteorological stations in the SR and NR subregions, also show spatial–temporal aerosol variability evident in the MODIS AOD data. Relative to the case of a weak monsoon year, meridional winds and convection are stronger and more clouds and precipitation are observed in the NR subregion during the active monsoon year. The opposite pattern is observed in the SR subregion. The spatial–temporal variation pattern of aerosols over eastern Asia illustrates the nonnegligible role of transport and dispersal mechanisms associated with the Indian summer monsoon in the region.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2010-09-01
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) observations provide an unprecedented opportunity for studying cloud macrophysical (cloud-top pressure, temperature, height, and phase), microphysical (effective particle size), and optical (optical thickness) properties. Given the length of time these MODIS products have been available, it is found that the cloud products can provide a wealth of information about equatorial wave systems. In this study, more than six years of the MODIS cloud-top properties inferred from the Aqua MODIS observations are used to investigate equatorial waves. It is shown that the high-resolution daily gridded cloud-top temperature product can be used to quantitatively study convective clouds. Various modes of convectively coupled equatorial waves including Kelvin, n = 1 equatorial Rossby, mixed Rossby–gravity, n = 0 eastward inertial-gravity waves, and the Madden–Julian oscillation are identified on the basis of space–time spectral analysis. The application of spectral analysis to cirrus cloud optical thickness, retrieved from MODIS cirrus reflectance, confirms the convective signals at high altitudes. A cluster of Kelvin pulses is found to propagate eastward around the globe at a phase speed approximately 15 m s−1. The Madden–Julian oscillation propagates at a slower speed and is most prominent over the Indian–Pacific Oceans region. The consistency between the present results with those of previous studies demonstrates that the MODIS cloud-top property products are valuable for studying phenomena associated with atmospheric dynamics.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...