ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR  (7)
  • Cells, Cultured  (3)
  • 2010-2014  (3)
  • 1970-1974  (6)
  • 1960-1964  (1)
  • 1
    Publication Date: 2011-11-15
    Description: Intestinal epithelial stem cell identity and location have been the subject of substantial research. Cells in the +4 niche are slow-cycling and label-retaining, whereas a different stem cell niche located at the crypt base is occupied by crypt base columnar (CBC) cells. CBCs are distinct from +4 cells, and the relationship between them is unknown, though both give rise to all intestinal epithelial lineages. We demonstrate that Hopx, an atypical homeobox protein, is a specific marker of +4 cells. Hopx-expressing cells give rise to CBCs and all mature intestinal epithelial lineages. Conversely, CBCs can give rise to +4 Hopx-positive cells. These findings demonstrate a bidirectional lineage relationship between active and quiescent stem cells in their niches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Norifumi -- Jain, Rajan -- LeBoeuf, Matthew R -- Wang, Qiaohong -- Lu, Min Min -- Epstein, Jonathan A -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1420-4. doi: 10.1126/science.1213214. Epub 2011 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22075725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epithelial Cells/*cytology ; Homeodomain Proteins/analysis/genetics ; Intestinal Mucosa/*cytology/drug effects ; Intestine, Small/*cytology/drug effects ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/physiology ; Paneth Cells/cytology ; *Stem Cell Niche ; Tamoxifen/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-29
    Description: Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Jason -- Kheradpour, Pouya -- Mikkelsen, Tarjei S -- Shoresh, Noam -- Ward, Lucas D -- Epstein, Charles B -- Zhang, Xiaolan -- Wang, Li -- Issner, Robbyn -- Coyne, Michael -- Ku, Manching -- Durham, Timothy -- Kellis, Manolis -- Bernstein, Bradley E -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG004570-01/HG/NHGRI NIH HHS/ -- U54 HG004570-02/HG/NHGRI NIH HHS/ -- U54 HG004570-02S1/HG/NHGRI NIH HHS/ -- U54 HG004570-03/HG/NHGRI NIH HHS/ -- U54 HG004570-03S1/HG/NHGRI NIH HHS/ -- U54 HG004570-04/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441907" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Physiological Phenomena ; Cells, Cultured ; Chromatin/*genetics/*metabolism ; *Chromosome Mapping ; Gene Expression Regulation ; Genome, Human/genetics ; Hep G2 Cells ; Humans ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-25
    Description: An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeigerer, Anja -- Gilleron, Jerome -- Bogorad, Roman L -- Marsico, Giovanni -- Nonaka, Hidenori -- Seifert, Sarah -- Epstein-Barash, Hila -- Kuchimanchi, Satya -- Peng, Chang Geng -- Ruda, Vera M -- Del Conte-Zerial, Perla -- Hengstler, Jan G -- Kalaidzidis, Yannis -- Koteliansky, Victor -- Zerial, Marino -- England -- Nature. 2012 May 23;485(7399):465-70. doi: 10.1038/nature11133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Polarity ; Cells, Cultured ; Endocytosis ; Endosomes/*metabolism ; Gene Knockdown Techniques ; Hepatocytes/cytology/metabolism ; Isoenzymes/biosynthesis/deficiency/genetics/metabolism ; Lipoproteins, LDL/metabolism ; Liver/cytology/enzymology/metabolism ; Lysosomes/*metabolism ; Mice ; Multivesicular Bodies/metabolism ; Organ Specificity ; Protein Biosynthesis ; RNA Interference ; RNA, Messenger/analysis/genetics ; Time Factors ; Vesicular Transport Proteins/metabolism ; rab5 GTP-Binding Proteins/biosynthesis/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-24
    Description: Refraction index for helium isoelectronic sequence, using frequency dependent dipole polarizability
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: The well-known relationship between gauge invariance and current conservation is exhibited within the usual quantum mechanical formalism. It is then shown that the use of Gauge Invariant Atomic Orbitals does not necessarily lead to the expected current conservation. The reason is found to lie in the constrained nature of the gauge invariance which is provided by the use of GIAO's. It is concluded that this invariance is, of itself, no argument in favor of their use.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: Journal of Chemical Physics; 58; Feb. 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Method of moments for determining wave functions used in calculating molecular properties
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: ; ACE(
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: The well known relationship between gauge invariance and current conservation is exhibited within the usual quantum mechanical formalism. It is then shown that the use of gauge-invariant atomic orbitals (GIAO) does not necessarily lead to the expected current conservation. The reason is found to lie in the constrained nature of the gauge invariance which is provided by the use of GIAO's. It is concluded that this invariance is, of itself, no argument in favor of their use.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-CR-129246 , WIS-TCI-491
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Angular distribution of small-pitch-angle synchrotron radiation
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-CR-117902 , SU-IPR-405
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Atomic system ground state energy upper bound, considering internuclear distances and removal of restriction for negative definite potential energy operator
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: ; YAL SOCIETY (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: It is shown that the first order orbitals for X-alpha or Hartree-Fock atoms perturbed by multipole electric fields have the expected symmetry properties.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-CR-138259 , WIS-TCI-509
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...