ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bonn  (3)
  • Mineralogical Society of Great Britain and Ireland  (3)
  • BioMed Central  (2)
  • 2010-2014  (5)
  • 1970-1974  (3)
  • 1965-1969
Collection
Language
Years
Year
  • 1
    Call number: SR 90.0091(14)
    In: Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität Bonn
    Type of Medium: Series available for loan
    Pages: I, 17 S.
    Series Statement: Mitteilungen aus dem Institut für Theoretische Geodäsie der Universität Bonn 14
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: SR 90.0091(19)
    In: Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität Bonn
    Type of Medium: Series available for loan
    Pages: II, 43 S.
    Series Statement: Mitteilungen aus dem Institut für Theoretische Geodäsie der Universität Bonn 19
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: SR 90.0091(9)
    In: Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität Bonn
    Type of Medium: Series available for loan
    Pages: 9 S.
    Series Statement: Mitteilungen aus dem Institut für Theoretische Geodäsie der Universität Bonn 9
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-08
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeans = 1.82(3) and Dcalc = 1.79 g cm−3. Hielscherite is optically uniaxial (−), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d,Å(I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-01
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeans = 1.82(3) and Dcalc = 1.79 g cm−3. Hielscherite is optically uniaxial (−), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d,Å(I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-01
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeas = 1.82(3) and Dcalc = 1.79 g cm–3. Hielscherite is optically uniaxial (–), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d, Å (I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-04
    Description: Background CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis. Results To identify the cellular processes affected by CTBT, we screened the systematic haploid deletion mutant collection for CTBT sensitive mutants. We identified 169 hypersensitive deletion mutants. The deleted genes encode proteins mainly involved in mitochondrial functions, DNA repair, transcription and chromatin remodeling, and oxidative stress response. We found that the susceptibility of yeast cells to CTBT depends on molecular oxygen. Transcriptome analysis of the immediate early response to CTBT revealed rapid induction of oxidant and stress response defense genes. Many of these genes depend on the transcription factors Yap1 and Cin5. Yap1 accumulates rapidly in the nucleus in CTBT treated cells suggesting acute oxidative stress. Moreover, molecular calculations supported a superoxide generating activity of CTBT. Superoxide production in vivo by CTBT was found associated to mitochondria as indicated by oxidation of MitoSOX Red. Conclusion We conclude that CTBT causes intracellular superoxide production and oxidative stress in fungal cells and is thus enhancing antimycotic drug effects by a secondary stress.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-04
    Description: Background The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. Results To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. Conclusions Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.
    Electronic ISSN: 1471-2091
    Topics: Chemistry and Pharmacology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...