ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (3)
  • IR spectroscopy  (2)
  • American Geophysical Union  (5)
  • 2010-2014  (5)
  • 1975-1979
  • 1945-1949
  • 1
    Publication Date: 2012-02-03
    Description: The Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100–1100 cm−1 range, under clear-sky conditions and in the presence of cirrus clouds. The analysis of these measurements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5–7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 min, makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution.
    Description: Published
    Description: D02310
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: tropospheric water vapor ; IR spectroscopy ; REFIR-PAD ; ECOWAR ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Assessment of the hazard from lava flow inundation at the active volcano of Mount Etna, Italy, was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a digital-elevation-model-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈1500 m elevation) and that flank eruptions at elevations 〉2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Description: Published
    Description: F01019
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazard ; lava flow ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The REFIR-PAD spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth COoling by WAter vapouR emission (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100-1100 cm−1 range, under clear-sky condition and in the presence of cirrus clouds. The analysis of these mea surements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5–7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 minutes makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution.
    Description: In press
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: tropospheric water vapor ; IR spectroscopy ; REFIR-PAD ; ECOWAR ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Geophysical (tilt, seismic tremor and gravity signals), geochemical (crater SO2 flux) and infrared satellite measurements are presented and discussed to track the temporal evolution of the lava fountain episode occurring at Mt Etna volcano on 10 April 2011. The multi-disciplinary approach provides insight into a gas-rich magma source trapped in a shallow storage zone inside the volcano edifice. This generated the fast ascending gas-magma dispersed flow feeding the lava fountain and causing the depressurization of a deeper magma storage. Satellite thermal data allowed estimation of the amount of erupted lava, which, summed to the tephra volume, yielded a total volume of erupted products of about 1 106 m3. Thanks to the daylight occurrence of this eruptive episode, the SO2 emission rate was also estimated, showing a degassing cycle reaching a peak of 15,000 Mg d 1 with a mean daily value of 5,700 Mg d 1. The SO2 data from the previous fountain episode on 17–18 February to 10 April 2011, yielded a cumulative degassed magma volume of about 10.5 106 m3, indicating a ratio of roughly 10:1 between degassed and erupted volumes. This volumetric balance, differently from those previously estimated during different styles of volcanic activities with long-term (years) recharging periods and middle-term (weeks to months) effusive eruptions, points toward the predominant role played by the gas phase in generating and driving this lava fountain episode.
    Description: Published
    Description: L24307
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; lava fountain ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...