ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Klebsiella aerogenes ; Branched fermentation ; Methylglyoxal bypass ; Motabolic uncoupling ; Chemostat culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Klebsiella aerogenes NCTC 418 was cultured anaerobically in chemostat cultures (pH 6.8; 35° C) under carbon, phosphate-, ammonia-, sulphate- and potassium-limited conditions with glucose as the sole carbon- and energy source. The rates of uptake of glucose and excretion of fermentation products were quantitatively determined and carbon, hydrogen- and oxygen balances were constructed with recoveries better than 90%. It was found that under glucose-limited conditions the utilization of the carbon source was the most efficient. Under these conditions the highest Y GLU was obtained whilst virtually all glucose was fermented to acetate and ethanol and formate plus carbon dioxide. Under all glucose-sufficient conditions a branched fermentation was observed with acetate, ethanol, formate plus carbon dioxide, D-lactate, succinate and 2,3-butanediol as end-products. The lower Y GLU values for these cultures appeared to be a consequence of both a decreased Y ATP and a decreased efficiency of ATP synthesis from the dissimilation of glucose. In contrast to aerobic cultures, significant differences in fermentation patterns were not observed between the various glucose-sufficient cultures. The fermentation patterns of glucose-sufficient cultures appeared to be influenced by the specific growth rate. For all these cultures a lowering of the dilution rate resulted in a smaller fraction of glucose being fermented to acetate and a greater fraction being fermented to 2,3-butanediol. Relatively much glucose was fermented to D-lactate when the organisms were grown at a low dilution rate under sulphate-limited conditions. Anaerobic, glucose-limited cultures were found to be able to increase their specific uptake rate of glucose instantaneously when pulsed with glucose. The extra glucose taken up was fermented mainly to D-lactate whilst no increase in the specific production rate of acetate and ethanol occurred. The excreted D-lactate probably was not formed from pyruvate, by the NADH-linked lactate dehydrogenase, but via the methylglyoxal bypass. It is suggested that by invoking this bypass reaction K. aerogenes can metabolically uncouple ATP synthesis from glucose dissimilation, and herein may lie the physiological significance of this reaction sequence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Klebsiella aerogenes ; Glucose uptake capacity ; Methylglyoxal bypass ; Metabolic uncoupling ; Chemostat culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Klebsiella aerogenes NCTC418 was cultured anaerobically under glucose-limited conditions in chemostat cultures at various growth rates, ranging from 0.13 h-1 to 0.82 h-1. It was found that the specific uptake rate of glucose varied linearly with the growth rate and that under these conditions glucose was fermented solely to acetate and ethanol plus CO2+H2 and formate. When steady-state cultures were pulsed with cell saturating concentrations of glucose, the specific glucose aptake rate increased immediately and substantially. However, at steady-state growth rates lower than 0.5 h-1, this increase was not accompanied by a change in the growth rate, in contrast to cultures growing at higher rates. It was found that relief of the glucose limitation resulted in a shift in fermentation pattern: at the lower growth rates 50% or more of the extra glucose taken up was fermented to D-lactate. Incubation experiments with sonified cells revcaled that K. aerogenes possessed all the enzymes needed to convert dihydroxyacetone phosphate to methylglyoxal and subsequently to D-lactate, and that the rate at which this overall conversion occurred in vitro was in close agreement with the production rate of D-lactate in vivo. Moreover, it was found that the activities of the enzymes of the methylglyoxal bypass were dependent on the imposed growth rate. At higher growth rates, where cells possessed the potential to increase their growth rate immediately, the activity of methylglyoxal synthase was relatively low. it could be shown that, under low growth rate conditions, the uncoupling effect of the methylglyoxal bypass was highly effective and that, as a consequence thereof, a significant increase in the uptake rate of the energy source was accompanied by only a marginal increase in the rate at which ATP was synthesized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...