ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (4)
  • Friction  (2)
  • 2010-2014  (2)
  • 1985-1989  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 192 (1987), S. 27-42 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The fate and possible roles of the cytoskeleton in the process of conjugation in the hyptrich ciliate Euplotes aediculatus were investigated. Following the coalescence of the plasma membranes of the conjugant cells, a fusion zone or bridge of cytoplasm contributed by both partners is constructed. The sub-alveolar microtubule layers of the vegetative cell cortex remain in place to define the fusion zone boundaries after cell union. The initial fusion zone consists primarily of featureless ground cytoplasm; soon the ground plasm becomes crowded with microtubules and anastomosing smooth endoplasmic reticulum, which become displaced only late in conjugation as the migratory pronuclei are exchanged between partners. Fusion zone microtubules, functioning in some undetermined way, may be involved in the nuclear migration. Resorption of the posterior portion of each partner's buccal apparatus results in the degradation of the component cilia within acid phosphatase-positive autophagic bodies. Silver staining for light microscopy shows that the late fusion zone contracts forward from the posterior border, then constricts to separate the conjugants. In some separating pairs remnants of a microfilamentous assembly are seen at the posterior edge of the fusion zone; the full extent of this system may be masked by partial degradation due to osmium tetroxide fixation. Treatment of conjugants for 6 hours with cytochalasin B prevents separation, possibly through inhibition of the actin-like microfilament assembly in the fusion zone. The observations and experiments favor a model of cell separation following conjugation in which the fusion zone is resorbed by motile or contractile processes occurring within or around the fusion bridge itself.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 192 (1987), S. 43-61 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The formation and subsequent dissolution of a common bridge of cytoplasm between conjugating ciliated protozoan cells provides an excellent opportunity to follow the dynamics of the cellular membrane systems involved in this process. In particular, separation of conjugant partners offers the chance to observe, at a fixed site on the cell surface, how the ciliate surface complex of plasma and alveolar membranes (collectively termed the “pellicle”) is constructed. Consequently, cortical and cellular membranes of Euplotes aediculatus were studied by light and electron microscopy through the conjugation sequence. A conjugant fusion zone of shared cytoplasm elaborates between the partner cells within their respective oral fields (peristomes) to include microtubules, cytosol, and a concentrated endoplasmic reticulum (heavily stained by osmium impregnation techniques) that may also be continuous with cortical ER of each cell. Cortical membranes displacd by fusion are autolyzed in acid phosphatase-positive lysosomes in the fusion zone. As conjugants separate, expansion of the plasma membrane may occur through the fusion of vesicles with the plasma membrane, presumably at bare membrane, presumably at bare membrane patches near the fusion zone. The underlying cortical alveolar membranes and their plate-like contents are reconstructed beneath the plasma membrane, apparently by multiple fusions of dense-cored alveolar precursor vesicles (APVs). These precursor vesicles themselves appear to condense directly from the smooth ER present in the fusion zone. No Golgi apparatus was visible in the fusion zone cytoplasm, and no step of APV maturation that might involve the Golgi complex was noted.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 124 (1985), S. 391-396 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0192-253X
    Keywords: Transposable element ; Transcription factor ; Suppression ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have used the yellow gene of Drosophila melanogaster as a model system in which to study the molecular mechanisms by which the gypsy retrotransposon causes mutant phenotypes that can be reversed by nonalleiic mutations at the suppressor of Hairy-wing locus. This gene encodes a 109,000 dalton protein that contains an acidic domain and 12 copies of the Zn finger motif, which are characteristic of some transcription factors and DNA binding proteins. The suppressible y2 allele is caused by the insertion of the gypsy element at -700 bp from the start of transcription of the Yellow gene, resulting in a phenotype characterized by mouth parts and denticle belts in the larvae, and by bristles in the adults, that show wildtype coloration, but mutant wings and body cuticle in the adult flies. This phenotype is the result of the interaction of gypsy sequences homologous to mammalian enhancers with tissue-specific yellow transcriptional regulatory elements located upstream from the gypsy insertion site and responsible for the expression of the yellow gene in the mutated tissues. This interaction is dependent on the binding of the su(Hw) protein to the specific gypsy sequences involved in the induction of the mutant phenotype.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 107-124, doi:10.1175/2008JPO3952.1.
    Description: In most estuarine systems it is assumed that the dominant along-channel momentum balance is between the integrated pressure gradient and bed stress. Scaling the amplitude of the estuarine circulation based on this balance has been shown to have predictive skill. However, a number of authors recently highlighted important nonlinear processes that contribute to the subtidal dynamics at leading order. In this study, a previously validated numerical model of the Hudson River estuary is used to examine the forces driving the residual estuarine circulation and to test the predictive skill of two linear scaling relationships. Results demonstrate that the nonlinear advective acceleration terms contribute to the subtidal along-channel momentum balance at leading order. The contribution of these nonlinear terms is driven largely by secondary lateral flows. Under a range of forcing conditions in the model runs, the advective acceleration terms nearly always act in concert with the baroclinic pressure gradient, reinforcing the residual circulation. Despite the strong contribution of the nonlinear advective terms to the subtidal dynamical balance, a linear scaling accurately predicts the strength of the observed residual circulation in the model. However, this result is largely fortuitous, as this scaling does not account for two processes that are fundamental to the estuarine circulation. The skill of this scaling results because of the compensatory relationship between the contribution of the advective acceleration terms and the suppression of turbulence due to density stratification. Both of these processes, neither of which is accounted for in the linear scaling, increase the residual estuarine circulation but have an opposite dependence on tidal amplitude and, consequently, strength of stratification.
    Description: This research was supported by the Beacon Institute for Rivers and Estuaries—Woods Hole Oceanographic Institution postdoctoral fellowship program, as well as NSF Grants OCE-0452054 and OCE-0451740.
    Keywords: Advection ; Estuarine circulation ; Friction ; Density currents ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1859-1877, doi:10.1175/jpo3088.1.
    Description: A series of dye releases in the Hudson River estuary elucidated diapycnal mixing rates and temporal variability over tidal and fortnightly time scales. Dye was injected in the bottom boundary layer for each of four releases during different phases of the tide and of the spring–neap cycle. Diapycnal mixing occurs primarily through entrainment that is driven by shear production in the bottom boundary layer. On flood the dye extended vertically through the bottom mixed layer, and its concentration decreased abruptly near the base of the pycnocline, usually at a height corresponding to a velocity maximum. Boundary layer growth is consistent with a one-dimensional, stress-driven entrainment model. A model was developed for the vertical structure of the vertical eddy viscosity in the flood tide boundary layer that is proportional to u2*/N∞, where u* and N∞ are the bottom friction velocity and buoyancy frequency above the boundary layer. The model also predicts that the buoyancy flux averaged over the bottom boundary layer is equal to 0.06N∞u2* or, based on the structure of the boundary layer equal to 0.1NBLu2*, where NBL is the buoyancy frequency across the flood-tide boundary layer. Estimates of shear production and buoyancy flux indicate that the flux Richardson number in the flood-tide boundary layer is 0.1–0.18, consistent with the model indicating that the flux Richardson number is between 0.1 and 0.14. During ebb, the boundary layer was more stratified, and its vertical extent was not as sharply delineated as in the flood. During neap tide the rate of mixing during ebb was significantly weaker than on flood, owing to reduced bottom stress and stabilization by stratification. As tidal amplitude increased ebb mixing increased and more closely resembled the boundary layer entrainment process observed during the flood. Tidal straining modestly increased the entrainment rate during the flood, and it restratified the boundary layer and inhibited mixing during the ebb.
    Description: The work was supported by the National Science Foundation Grant OCE00-95972 (W. Geyer, J. Lerczak), OCE00-99310 (R. Houghton), and OCE00-95913 (R. Chant, E. Hunter).
    Keywords: Estuaries ; Boundary layer ; Mixing ; Tides ; Friction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...