ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-08-01
    Description: Animal agriculture and the use of manure as a soil amendment can lead to enteric pathogens entering water used for drinking, irrigation, and recreation. The presence of Escherichia coli in water is commonly used as an indicator of recent fecal contamination; however, a few recent studies suggest some E. coli populations are able to survive for extended time periods in agricultural soils. This important finding needs to be further assessed with field-scale studies. To this end, we conducted a 1-yr study within a 9.6-ha field that had received fertilizer and semi-solid dairy cattle manure annually for the past decade. Escherichia coli concentrations were monitored throughout the year (before and after manure application) in the effluent from tile drains (at approximately 80 cm depth) and in 5- to 8-m-deep groundwater wells. Escherichia coli was detected in both groundwater and tile drain effluent at concentrations exceeding irrigation and recreational water-quality guidelines. Within two of the monitoring wells, concentrations of E. coli, and frequency of detections, were greatest several months after the manure application. In two monitoring wells and one tile drain the frequency of E. coli detections was higher before manure was applied than after. This suggests the presence and abundance of E. coli was not strongly related to the timing of manure application. A laboratory study using naladixic acid resistant E. coli showed the bacteria could survive at least two times longer in soil samples collected from the study field than in soil from the adjacent riparian area, which had not received manure applications. Together, field and lab results suggest that a consistent source of E. coli exists within the field, which may include “naturalized” strains of E. coli. Further studies are required to determine the specific source of E. coli detected in tile drainage water and shallow groundwater. If the E. coli recovered in subsurface water is primarily mobilized from naturalized populations residing within the soil profile, this indicator organism would have little value as an indicator of recent fecal contamination. Key words: Bacterial survival, naturalized Escherichia coli, groundwater, tile drainage
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...