ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-04-15
    Description: Numerical modelling by finite element methods provides two significant insights into the formation of the giant amethyst geodes of the Paraná volcanic province: the conditions needed to open the cavities and the conditions that control their size and shape. Giant amethyst geodes were formed in the Cretaceous (135 Ma) in altered volcanic rocks by water vapour pressure (Δp) at about 0.5 MPa under an altered basalt cover of 5–20 m. Only rocks with Young’s modulus values (E) in the range 1–2 GPa can sustain ballooning, which is the growth of a cavity in a ductile medium by the pressure of water and its vapour. The size of the proto-geode is dependent on the water vapour pressure, which is directly related to thickness of the overlying basalt. Varying the yield points causes the formation of either prolate or oblate cavities. A low transition point (smaller than 0.18 MPa) generates a prolate-shaped cavity, whereas a high transition point (larger than 0.18 MPa) generates oblate proto-geodes. Proto-geodes are smaller when Young’s modulus is higher (rock is less altered) or when water vapour pressure is lower (because of thinner overburden of basalt). The calculations are an indication that the processes operative in the altered basalts led to the opening of giant cavities by ballooning.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-12
    Description: Author(s): P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier We demonstrate here the realization of an integrated, electrically driven, source of surface plasmon polaritons. Light-emitting individual single-walled carbon nanotube field effect transistors were fabricated in a plasmonic-ready platform. The devices were operated at ambient conditions to act as a... [Phys. Rev. Lett. 111, 026804] Published Thu Jul 11, 2013
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-13
    Description: A short overview of recent results on the effects of pressure (collisions) regarding the shape of isolated infrared lines of water vapour is presented. The first part of this study considers the basic collisional quantities, which are the pressure-broadening and -shifting coefficients, central parameters of the Lorentzian (and Voigt) profile and thus of any sophisticated line-shape model. Through comparisons of measured values with semi-classical calculations, the influences of the molecular states (both rotational and vibrational) involved and of the temperature are analysed. This shows the relatively unusual behaviour of H 2 O broadening, with evidence of a significant vibrational dependence and the fact that the broadening coefficient (in cm −1 atm −1 ) of some lines increases with temperature. In the second part of this study, line shapes beyond the Voigt model are considered, thus now taking ‘velocity effects’ into account. These include both the influence of collisionally induced velocity changes that lead to the so-called Dicke narrowing and the influence of the dependence of collisional parameters on the speed of the radiating molecule. Experimental evidence of deviations from the Voigt shape is presented and analysed. The interest of classical molecular dynamics simulations, to model velocity changes, together with semi-classical calculations of the speed-dependent collisional parameters for line-shape predictions from ‘first principles’, are discussed.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...