ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Shallow Water Equations  (2)
  • Computational Chemistry and Molecular Modeling  (1)
  • Wiley-Blackwell  (3)
  • 2010-2014
  • 1985-1989  (3)
  • 1955-1959
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 29 (1986), S. 205-210 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We report in this paper the results of outer and inner valence IP calculations for the HF molecule using two different many-body methods for the direct evaluation of energy differences. The first is the nonperturbative coupled-cluster based linear response theory (LRT) and the second is the hermitian open-shell many-body perturbation theory (MBPT). A Huzinaga-Dunning (9s5p→ 5s3p/3s) basis has been used. LRT uses an “ionization operator” S as in the equation of motion method (EOM) to generate the ionized states from a coupled-cluster type of ground state. S is chosen to consist of single ionization and ionization-cum-shake-up operators, thus treating the Koopmans as well as the shake-up states on equal footing. LRT would thus be capable of computing both the outer and the inner valence regions with equal facility. This is borne out by the results. For the open-shell MBPT, the model space is chosen to be spanned by the singly ionized determinants. The convergence of the results for the inner valence region is slow, and the results obtained from the [2, 1] Pade' approximants are presented. Unlike the LRT, the inner valence region is not reproduced with full complexity in MBPT, indicating that it is essential to modify the theory by way of expanding the model space to contain the shake-up determinants also.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 7 (1987), S. 453-464 
    ISSN: 0271-2091
    Keywords: Boundary Fitted Co-ordinate System ; Shallow Water Equations ; Rotating Containers ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical solutions are often inaccurate because conventional co-ordinate systems do not represent the complex physical boundaries accurately. In the present work, the numerical solution of linear shallow water wave equations has been obtained by transforming the physical domain into a rectangular computational domain using elliptic differential operators. This work is part of a programme to develop three-dimensional body-fit grid systems for environmental flows. Solutions have been obtained for a cylindrical container and also a parabolic container. The initial conditions chosen are the ones for which analytical solutions exist. The numerical solutions compare well with analytical solutions.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 529-539 
    ISSN: 0271-2091
    Keywords: Shallow Water Equations ; Boundary Fitted Grids ; Time Dependent Solution Domains ; Free Surface Problems ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper gives the results of an application of the SWEs (shallow water equations) to a part of the Hamburg harbour area, which is a complex flow domain, using the BFG approach, outlined in Part I. The results of a grid doubling procedure generating the desired computational grid from a coarse initial mesh are also presented. A second class of problems which is addressed, demands time-dependent co-ordinate systems. The problems which are solved are the free surface problem for a moving wave which eventually breaks and for a wave which is reflected by the solid walls of a rectangular basin.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...