ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-06
    Description: A series of bis(n)-tacrines were used as pharmacological probes of the acetylcholinesterase (AChE) catalytic and peripheral sites of Blattella germanica and Drosophila melanogaster, which express AChE-1 and AChE-2 isoforms, respectively. In general, the potency of bis(n)-tacrines was greater in D. melanogaster AChE (DmAChE) than in B. germanica AChE (BgAChE). The change in potency with tether length was high in DmAChE and low in BgAChE, associated with 90-fold and 5.2-fold maximal potency gain, respectively, compared to the tacrine monomer. The optimal tether length for Blattella was 8 carbons and for Drosophila was 10 carbons. The two species differed by only about twofold in their sensitivity to tacrine monomer, indicating that differential potency occurred among dimeric bis(n)-tacrines due to structural differences in the peripheral site. Multiple sequence alignment and in silico homology modeling suggest that aromatic residues of DmAChE confer higher affinity binding, and the lack of same at the BgAChE peripheral site may account, at least in part, to the greater overall sensitivity of DmAChE to bis(n)-tacrines, as reflected by in vitro assay data. Topical and injection assays in cockroaches found minimal toxicity of bis(n)-tacrines. Electrophysiological studies on D. melanogaster central nervous system showed that dimeric tacrines do not readily cross the blood brain barrier, explaining the observed nonlethality to insects. Although the bis(n)-tacrines were not good insecticide candidates, the information obtained in this study should aid in the design of selective bivalent ligands targeting insect, pests, and disease vectors.
    Print ISSN: 0739-4462
    Electronic ISSN: 1520-6327
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-24
    Description: Air temperature can be an effective predictor of stream temperature. However, little work has been done in studying urban impacts on air-stream relationships in groundwater-fed headwater streams in mountainous watersheds. We applied wavelet coherence analysis to two 13-month continuous (1 hr interval) stream and air temperature datasets collected at Boone Creek, an urban stream, and Winkler Creek, a forest stream, in northwestern North Carolina. The main advantage of a wavelet coherence analysis approach is the ability to analyze non-stationary dynamics for the temporal covariance between air and stream temperature over time and at multiple temporal scales (e.g., hours, days, weeks, months). The coherence is both time and scale-dependent. Our research indicated that air temperature generally co-varied with stream temperature at time scales greater than 0.5 day. The correlation was poor during the winter at the scales of 1 to 64 days, and summer at the scales of 1.5 to 4 days, respectively. The empirical models that relate air temperature to stream temperature failed at these scales and during these time periods. Finally, urbanization altered the air-stream temperature correlation at intermediate time scales ranging from 2 to 12 days. The correlation at the urban creek increased at the 12-day scale while it decreased at scales of 2 to7 days as compared to the forested stream, which is probably due to heated surface runoff during summer thunderstorms or leaking stormwater or wastewater collection systems. Our results provide insights into air-stream temperature relationships over both time and scale domains. Identifying controls over time and scales are needed to predict water temperature to understand the future impacts that interacting climate and land use changes will have on aquatic ecosystem in river networks. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-09-01
    Print ISSN: 0730-2312
    Electronic ISSN: 1097-4644
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...