ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 61.12Dw  (2)
  • Salt wedge estuary
  • Springer  (2)
  • American Geophysical Union  (1)
  • American Society of Hematology
  • Paleontological Society
  • Wiley
  • 2010-2014  (1)
  • 1990-1994  (2)
Collection
Publisher
  • Springer  (2)
  • American Geophysical Union  (1)
  • American Society of Hematology
  • Paleontological Society
  • Wiley
Years
  • 2010-2014  (1)
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 54 (1992), S. 19-21 
    ISSN: 1432-0630
    Keywords: 61.12Dw ; 72.10 ; 78.50G
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The formation of silicon oxide precipitates from Czochralski grown silicon depends on the time and temperature of the heat treatment as well as on the initial content of interstitially dissolved oxygen. Samples containing between 5×1017 Oi/cm3 and 13×1017 Oi/cm3 have been heated at 750° C for 96 h. SiO2 precipitates of various shape and size have been obtained and investigated by means of small angle neutron scattering (SANS) in the Q-range 0.05 Å−1〈Q〈0.2 Å−1. The obtained SANS patterns reveal a typical anisotropy of their intensity distribution, which splits into a central peak at Q〈0.1 Å−1 due to the shape of the individual particles and a number of weak intensities for large Q-values, originating from a correlation between defects, possibly between the precipitates. While these correlation peaks in the SANS patterns are seen best for rather low values of about (5–7)×1017 Oi/cm3 oxygen content, the central peak anisotropy is most pronounced for higher values of ca 10×1017 Oi/cm3. The integrated intensity of the central peak increases with increasing initial oxygen content. For comparison, untreated samples of the same initial oxygen content do not reveal any anisotropic SAN scattering or a broadened central peak beam.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: 61.12Dw ; 72.10 ; 78.50G
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Czochralski grown silicon crystals contain interstitially dissolved oxygen which diffuses on heating to form precipitates of silica. We have examined these precipitates by small angle neutron scattering (SANS) in the Q-range 0.05 Å−1〈Q〈0.4 Å−1. The obtained SANS patterns reveal pronounced anisotropic intensity distributions which resemble the symmetry of the host crystal. The SANS spectra show an anisotropic central peak at Q〈0.1 Å−1 due to the single particle shape and a number of weak intensities for larger Q-values. These weak side maxima are considered correlation peaks or quasi-elastic interference peaks. They show, however, an unexpected and distinct temperature dependence: with decreasing temperature below values of 220 K their intensity is lost slowly, but reversibly. At T = 50 K only the central peak from the single-particle scattering remains unchanged. Upon heating, the correlation peaks regain their former value of intensity and Q-position without any evidence of thermal hysteresis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C12024, doi:10.1029/2009JC006061.
    Description: Turbulent mixing of salt is examined in a shallow salt wedge estuary with strong fluvial and tidal forcing. A numerical model of the Merrimack River estuary is used to quantify turbulent stress, shear production, and buoyancy flux. Little mixing occurs during flood tides despite strong velocities because bottom boundary layer turbulence is dislocated from stratification elevated in the water column. During ebbs, bottom salinity fronts form at a series of bathymetric transitions. At the fronts, near-bottom velocity and shear stress are low, but shear, stress, and buoyancy flux are elevated at the pycnocline. Internal shear layers provide the dominant source of mixing during the early ebb. Later in the ebb, the pycnocline broadens and moves down such that boundary layer turbulence dominates mixing. Mixing occurs primarily during ebbs, with internal shear mixing accounting for about 50% of the total buoyancy flux. Both the relative contribution of internal shear mixing and the mixing efficiency increase with discharge, with bulk mixing efficiencies between 0.02 and 0.07. Buoyancy fluxes in the estuary increase with discharge up to about 400 m3 s−1 above which a majority of the mixing occurs offshore. Observed buoyancy fluxes were more consistent with the k-ɛ turbulence closure than the Mellor-Yamada closure, and more total mixing occurred in the estuary with k-ɛ. Calculated buoyancy fluxes were sensitive to horizontal grid resolution, as a lower resolution grid yielded less integrated buoyancy flux in the estuary and exported lower salinity water but likely had greater numerical mixing.
    Description: This research was funded by National Science Foundation Grant OCE‐0452054. Ralston also received support from The Penzance Endowed Fund in Support of Assistant Scientists and The John F. and Dorothy H. Magee Fund in Support of Scientific Staff at Woods Hole Oceanographic Institution.
    Keywords: Mixing ; Turbulence ; Salt wedge estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...