ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-19
    Description: The pluripotency factor Lin28 blocks the expression of let-7 microRNAs in undifferentiated cells during development, and functions as an oncogene in a subset of cancers. Lin28 binds to let-7 precursor (pre-let-7) RNAs and recruits 3' terminal uridylyl transferases to selectively inhibit let-7 biogenesis. Uridylated pre-let-7 is refractory to processing by Dicer, and is rapidly degraded by an unknown RNase. Here we identify Dis3l2 as the 3'-5' exonuclease responsible for the decay of uridylated pre-let-7 in mouse embryonic stem cells. Biochemical reconstitution assays show that 3' oligouridylation stimulates Dis3l2 activity in vitro, and knockdown of Dis3l2 in mouse embryonic stem cells leads to the stabilization of pre-let-7. Our study establishes 3' oligouridylation as an RNA decay signal for Dis3l2, and identifies the first physiological RNA substrate of this new exonuclease, which is mutated in the Perlman syndrome of fetal overgrowth and causes a predisposition to Wilms' tumour development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651781/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651781/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Hao-Ming -- Triboulet, Robinson -- Thornton, James E -- Gregory, Richard I -- R01 GM086386/GM/NIGMS NIH HHS/ -- R01GM086386/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):244-8. doi: 10.1038/nature12119. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Program, Boston Children's Hospital, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Embryonic Stem Cells/metabolism ; Exonucleases/*metabolism ; Exoribonucleases/*metabolism ; Fetal Macrosomia/*enzymology/*genetics/metabolism ; HEK293 Cells ; Humans ; Mice ; MicroRNAs/genetics/*metabolism ; RNA Precursors/genetics/metabolism ; RNA Processing, Post-Transcriptional ; *RNA Stability ; RNA-Binding Proteins/*metabolism ; Ribonucleases/*metabolism ; Substrate Specificity ; Uridine Monophosphate/analogs & derivatives/metabolism ; Wilms Tumor/*enzymology/etiology/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-22
    Description: The non-canonical NF-kappaB pathway forms a major arm of NF-kappaB signalling that mediates important biological functions, including lymphoid organogenesis, B-lymphocyte function, and cell growth and survival. Activation of the non-canonical NF-kappaB pathway involves degradation of an inhibitory protein, TNF receptor-associated factor 3 (TRAF3), but how this signalling event is controlled is still unknown. Here we have identified the deubiquitinase OTUD7B as a pivotal regulator of the non-canonical NF-kappaB pathway. OTUD7B deficiency in mice has no appreciable effect on canonical NF-kappaB activation but causes hyperactivation of non-canonical NF-kappaB. In response to non-canonical NF-kappaB stimuli, OTUD7B binds and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing aberrant non-canonical NF-kappaB activation. Consequently, the OTUD7B deficiency results in B-cell hyper-responsiveness to antigens, lymphoid follicular hyperplasia in the intestinal mucosa, and elevated host-defence ability against an intestinal bacterial pathogen, Citrobacter rodentium. These findings establish OTUD7B as a crucial regulator of signal-induced non-canonical NF-kappaB activation and indicate a mechanism of immune regulation that involves OTUD7B-mediated deubiquitination and stabilization of TRAF3.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578967/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578967/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Hongbo -- Brittain, George C -- Chang, Jae-Hoon -- Puebla-Osorio, Nahum -- Jin, Jin -- Zal, Anna -- Xiao, Yichuan -- Cheng, Xuhong -- Chang, Mikyoung -- Fu, Yang-Xin -- Zal, Tomasz -- Zhu, Chengming -- Sun, Shao-Cong -- AI057555/AI/NIAID NIH HHS/ -- AI064639/AI/NIAID NIH HHS/ -- CA137059/CA/NCI NIH HHS/ -- GM84459/GM/NIGMS NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 CA137059/CA/NCI NIH HHS/ -- R01 GM084459/GM/NIGMS NIH HHS/ -- T32 CA009598/CA/NCI NIH HHS/ -- T32CA009598/CA/NCI NIH HHS/ -- England -- Nature. 2013 Feb 21;494(7437):371-4. doi: 10.1038/nature11831. Epub 2013 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/metabolism ; Bacteria/immunology ; Cells, Cultured ; Endopeptidases/deficiency/genetics/*metabolism ; Female ; Fibroblasts ; HEK293 Cells ; Homeostasis ; Humans ; Intestines/immunology ; Male ; Mice ; NF-kappa B/*metabolism ; Proteolysis ; Receptors, Cell Surface/metabolism ; TNF Receptor-Associated Factor 3/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...