ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 3578-3588 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Various approximations are used currently to evaluate the static part Σ(∞) of the self-energy or optical potential in molecular Green's function calculations. Since its expansion is ruled out by the linked-cluster theorem, one generally assumes a size-intensive behavior of Σ(∞) in the thermodynamic limit of an infinite system. A detailed analysis of this size-dependence property is conducted using the formulation of crystalline orbitals (CO) for stereoregular polymers. In spite of the linked-cluster theorem, this study provides evidence for a logarithmic divergence with respect to the size of a chain for some forms of Σ(∞), computed with common approximation schemes. This is the direct outcome of the long-range character of the Coulombic interaction and can be related to a violation in the number of particles within the system. A proper size-intensive behavior implies an exact cancellation of the logarithmically divergent behavior of antigraphs. The conclusions drawn from CO analysis are confirmed by numerical tests on model oligomer systems. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 7583-7596 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The x-ray photoionization spectra of large saturated hydrocarbons have been investigated by means of one-particle Green's function calculations. These spectra saturate overall rather quickly to their asymptotic form with increasing system size. The results obtained indicate a severe breakdown of the molecular orbital picture of ionization above a binding energy threshold of about 23 eV, for n-alkane chains ranging from n-propane to n-nonane, or cycloalkane compounds such as cyclobutane, cyclopentane, and cyclohexane. In spite of the fast multiplication of satellite solutions, shake-up lines remain confined above that threshold, as a result of the delocalization properties of one-electron canonical states. The ring closure is shown to emphasize the dispersion of photoionization intensity into satellites. Conformational changes, on the other hand, have only marginal effects on the convoluted correlation bands. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-15
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-18
    Description: Many-body processes inevitably lead to the transition from one many-body wavefunction to another. Due to the complexity of the initial and final states many-body wavefunctions, one often wishes to try and describe such transitions using only a single-particle function. While there are numerous types of orbitals and densities which are commonly used, the question remains which one is optimal and in which sense. Here we present the optimal one and two body functions whose anti-symmetrized product with the initial state yields the maximal overlap with the final state. A definition of the above optimal condition and its rigorous proof are given. The resulting optimal functions shed additional light on the well-known Dyson orbital and reduced transition matrix, demonstrating further their physical meaning as independent functions.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...