ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (7)
  • Molecular Sequence Data  (5)
  • 2010-2014  (5)
  • 1995-1999  (3)
  • 1990-1994  (3)
  • 1985-1989  (1)
  • 1
    Publication Date: 1999-01-29
    Description: A carbapenem antibiotic, L-786,392, was designed so that the side chain that provides high-affinity binding to the penicillin-binding proteins responsible for bacterial resistance was also the structural basis for ameliorating immunopathology. Expulsion of the side chain upon opening of the beta-lactam ring retained antibacterial activity while safely expelling the immunodominant epitope. L-786,392 was well tolerated in animal safety studies and had significant in vitro and in vivo activities against methicillin- and vancomycin-resistant Staphylococci and vancomycin-resistant Enterococci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, H -- Hajdu, R -- Silver, L -- Kropp, H -- Dorso, K -- Kohler, J -- Sundelof, J G -- Huber, J -- Hammond, G G -- Jackson, J J -- Gill, C J -- Thompson, R -- Pelak, B A -- Epstein-Toney, J H -- Lankas, G -- Wilkening, R R -- Wildonger, K J -- Blizzard, T A -- DiNinno, F P -- Ratcliffe, R W -- Heck, J V -- Kozarich, J W -- Hammond, M L -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):703-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, Rahway, NJ 07065, USA. hugh_rosen@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/blood ; *Bacterial Proteins ; Carbapenems/chemistry/*immunology/metabolism/*pharmacology/toxicity ; Carrier Proteins/metabolism ; Dipeptidases/metabolism ; *Drug Design ; Drug Resistance, Microbial ; Drug Resistance, Multiple ; Enterococcus/drug effects ; Erythrocytes/immunology ; Haptens ; *Hexosyltransferases ; Humans ; Immunodominant Epitopes ; Immunoglobulin G/blood ; Lactams/chemical synthesis/chemistry/metabolism/*pharmacology ; Lymphocyte Activation ; Macaca mulatta ; Mice ; Mice, Inbred DBA ; Microbial Sensitivity Tests ; Muramoylpentapeptide Carboxypeptidase/metabolism ; Penicillin-Binding Proteins ; *Peptidyl Transferases ; Staphylococcal Infections/drug therapy ; Staphylococcus/drug effects ; Thiazoles/chemical synthesis/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-02
    Description: Epidermolysis bullosa simplex (EBS) is characterized by skin blistering due to basal keratinocyte fragility. In one family studied, inheritance of EBS is linked to the gene encoding keratin 14, and a thymine to cytosine mutation in exon 6 of keratin 14 has introduced a proline in the middle of an alpha-helical region. In a second family, inheritance of EBS is linked to loci that map near the keratin 5 gene. These data indicate that abnormalities of either of the components of the keratin intermediate filament heterodipolymer can impair the mechanical stability of these epithelial cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonifas, J M -- Rothman, A L -- Epstein, E H Jr -- R01-AR28069/AR/NIAMS NIH HHS/ -- R01-AR39953/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, San Francisco General Hospital, University of California 94110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1720261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Human, Pair 12 ; Chromosomes, Human, Pair 17 ; Epidermolysis Bullosa Simplex/*genetics ; Genes ; Genetic Linkage ; Humans ; Keratins/*genetics ; Molecular Sequence Data ; Oligonucleotides/chemistry ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-01
    Description: The challenge presented by myofibril assembly in striated muscle is to understand the molecular mechanisms by which its protein components are arranged at each level of organization. Recent advances in the genetics and cell biology of muscle development have shown that in vivo assembly of the myofilaments requires a complex array of structural and associated proteins and that organization of whole sarcomeres occurs initially at the cell membrane. These studies have been complemented by in vitro analyses of the renaturation, polymerization, and three-dimensional structure of the purified proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, H F -- Fischman, D A -- AR-32147/AR/NIAMS NIH HHS/ -- GM-33223/GM/NIGMS NIH HHS/ -- HL-42267/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1039-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1998120" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Amino Acid Sequence ; Animals ; Macromolecular Substances ; Molecular Sequence Data ; Morphogenesis ; Muscle Contraction ; *Muscle Development ; Muscle Proteins/*physiology ; Myofibrils/*physiology ; Myosins/physiology ; Polymers ; Sarcolemma/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-15
    Description: Intestinal epithelial stem cell identity and location have been the subject of substantial research. Cells in the +4 niche are slow-cycling and label-retaining, whereas a different stem cell niche located at the crypt base is occupied by crypt base columnar (CBC) cells. CBCs are distinct from +4 cells, and the relationship between them is unknown, though both give rise to all intestinal epithelial lineages. We demonstrate that Hopx, an atypical homeobox protein, is a specific marker of +4 cells. Hopx-expressing cells give rise to CBCs and all mature intestinal epithelial lineages. Conversely, CBCs can give rise to +4 Hopx-positive cells. These findings demonstrate a bidirectional lineage relationship between active and quiescent stem cells in their niches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Norifumi -- Jain, Rajan -- LeBoeuf, Matthew R -- Wang, Qiaohong -- Lu, Min Min -- Epstein, Jonathan A -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1420-4. doi: 10.1126/science.1213214. Epub 2011 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22075725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epithelial Cells/*cytology ; Homeodomain Proteins/analysis/genetics ; Intestinal Mucosa/*cytology/drug effects ; Intestine, Small/*cytology/drug effects ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/physiology ; Paneth Cells/cytology ; *Stem Cell Niche ; Tamoxifen/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-10
    Description: Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 x 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seder, Robert A -- Chang, Lee-Jah -- Enama, Mary E -- Zephir, Kathryn L -- Sarwar, Uzma N -- Gordon, Ingelise J -- Holman, LaSonji A -- James, Eric R -- Billingsley, Peter F -- Gunasekera, Anusha -- Richman, Adam -- Chakravarty, Sumana -- Manoj, Anita -- Velmurugan, Soundarapandian -- Li, MingLin -- Ruben, Adam J -- Li, Tao -- Eappen, Abraham G -- Stafford, Richard E -- Plummer, Sarah H -- Hendel, Cynthia S -- Novik, Laura -- Costner, Pamela J M -- Mendoza, Floreliz H -- Saunders, Jamie G -- Nason, Martha C -- Richardson, Jason H -- Murphy, Jittawadee -- Davidson, Silas A -- Richie, Thomas L -- Sedegah, Martha -- Sutamihardja, Awalludin -- Fahle, Gary A -- Lyke, Kirsten E -- Laurens, Matthew B -- Roederer, Mario -- Tewari, Kavita -- Epstein, Judith E -- Sim, B Kim Lee -- Ledgerwood, Julie E -- Graham, Barney S -- Hoffman, Stephen L -- VRC 312 Study Team -- 3R44AI055229-06S1/AI/NIAID NIH HHS/ -- 4R44AI055229-08/AI/NIAID NIH HHS/ -- 5R44AI058499-05/AI/NIAID NIH HHS/ -- N01-AI-40096/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1359-65. doi: 10.1126/science.1241800. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA. rseder@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929949" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Intravenous ; Adult ; Animals ; Cytokines/immunology ; Female ; Humans ; Immunity, Cellular ; Malaria Vaccines/*administration & dosage/adverse effects/*immunology ; Malaria, Falciparum/*prevention & control ; Male ; Mice ; Plasmodium falciparum/*immunology ; Sporozoites/immunology ; T-Lymphocytes/immunology ; Vaccination/adverse effects/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-05-02
    Description: Mutations in the tumor suppressor gene PATCHED (PTC) are found in human patients with the basal cell nevus syndrome, a disease causing developmental defects and tumors, including basal cell carcinomas. Gene regulatory relationships defined in the fruit fly Drosophila suggest that overproduction of Sonic hedgehog (SHH), the ligand for PTC, will mimic loss of ptc function. It is shown here that transgenic mice overexpressing SHH in the skin develop many features of basal cell nevus syndrome, demonstrating that SHH is sufficient to induce basal cell carcinomas in mice. These data suggest that SHH may have a role in human tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oro, A E -- Higgins, K M -- Hu, Z -- Bonifas, J M -- Epstein, E H Jr -- Scott, M P -- AR39959/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 2;276(5313):817-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115210" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basal Cell Nevus Syndrome/*genetics/metabolism/pathology ; Carcinoma, Basal Cell/*genetics/metabolism/pathology ; Embryo, Mammalian ; *Gene Expression Regulation, Neoplastic ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Keratinocytes/metabolism ; Male ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, SCID ; Mice, Transgenic ; Mutation ; Neoplasm Transplantation ; Protein Biosynthesis ; Proteins/*genetics/metabolism ; Receptors, Cell Surface ; Skin/pathology ; Skin Neoplasms/*genetics/metabolism/pathology ; Skin Transplantation ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-25
    Description: An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeigerer, Anja -- Gilleron, Jerome -- Bogorad, Roman L -- Marsico, Giovanni -- Nonaka, Hidenori -- Seifert, Sarah -- Epstein-Barash, Hila -- Kuchimanchi, Satya -- Peng, Chang Geng -- Ruda, Vera M -- Del Conte-Zerial, Perla -- Hengstler, Jan G -- Kalaidzidis, Yannis -- Koteliansky, Victor -- Zerial, Marino -- England -- Nature. 2012 May 23;485(7399):465-70. doi: 10.1038/nature11133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622570" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Polarity ; Cells, Cultured ; Endocytosis ; Endosomes/*metabolism ; Gene Knockdown Techniques ; Hepatocytes/cytology/metabolism ; Isoenzymes/biosynthesis/deficiency/genetics/metabolism ; Lipoproteins, LDL/metabolism ; Liver/cytology/enzymology/metabolism ; Lysosomes/*metabolism ; Mice ; Multivesicular Bodies/metabolism ; Organ Specificity ; Protein Biosynthesis ; RNA Interference ; RNA, Messenger/analysis/genetics ; Time Factors ; Vesicular Transport Proteins/metabolism ; rab5 GTP-Binding Proteins/biosynthesis/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-01
    Description: The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Xing-Yi -- Li, Jia-Lu -- Yang, Xing-Lou -- Chmura, Aleksei A -- Zhu, Guangjian -- Epstein, Jonathan H -- Mazet, Jonna K -- Hu, Ben -- Zhang, Wei -- Peng, Cheng -- Zhang, Yu-Ji -- Luo, Chu-Ming -- Tan, Bing -- Wang, Ning -- Zhu, Yan -- Crameri, Gary -- Zhang, Shu-Yi -- Wang, Lin-Fa -- Daszak, Peter -- Shi, Zheng-Li -- R01AI079231/AI/NIAID NIH HHS/ -- R01TW005869/TW/FIC NIH HHS/ -- R56TW009502/TW/FIC NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops ; China ; Chiroptera/*virology ; Disease Reservoirs/virology ; Feces/virology ; Fluorescent Antibody Technique ; Genome, Viral/genetics ; Host Specificity ; Humans ; Molecular Sequence Data ; Pandemics/prevention & control/veterinary ; Peptidyl-Dipeptidase A/genetics/*metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, Virus/genetics/metabolism ; SARS Virus/genetics/*isolation & purification/*metabolism/ultrastructure ; Severe Acute Respiratory Syndrome/prevention & ; control/transmission/veterinary/virology ; Species Specificity ; Spike Glycoprotein, Coronavirus/chemistry/metabolism ; Vero Cells ; Virion/isolation & purification/ultrastructure ; Virus Internalization ; Viverridae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-06-14
    Description: The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R L -- Rothman, A L -- Xie, J -- Goodrich, L V -- Bare, J W -- Bonifas, J M -- Quinn, A G -- Myers, R M -- Cox, D R -- Epstein, E H Jr -- Scott, M P -- AR3995/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658145" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Animals ; Basal Cell Nevus Syndrome/*genetics ; Base Sequence ; Cloning, Molecular ; DNA, Neoplasm ; Drosophila ; *Drosophila Proteins ; Female ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Insect Hormones/genetics ; Male ; Membrane Proteins/*genetics ; Middle Aged ; Molecular Sequence Data ; Polymerase Chain Reaction ; Polymorphism, Single-Stranded Conformational ; Protein Conformation ; Receptors, Cell Surface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-07-15
    Description: A subset of patients who have undergone coronary angioplasty develop restenosis, a vessel renarrowing characterized by excessive proliferation of smooth muscle cells (SMCs). Of 60 human restenosis lesions examined, 23 (38 percent) were found to have accumulated high amounts of the tumor suppressor protein p53, and this correlated with the presence of human cytomegalovirus (HCMV) in the lesions. SMCs grown from the lesions expressed HCMV protein IE84 and high amounts of p53. HCMV infection of cultured SMCs enhanced p53 accumulation, which correlated temporally with IE84 expression. IE84 also bound to p53 and abolished its ability to transcriptionally activate a reporter gene. Thus, HCMV, and IE84-mediated inhibition of p53 function, may contribute to the development of restenosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Speir, E -- Modali, R -- Huang, E S -- Leon, M B -- Shawl, F -- Finkel, T -- Epstein, S E -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; *Angioplasty, Balloon ; Antigens, Viral/*metabolism ; Atherectomy, Coronary ; Base Sequence ; Cells, Cultured ; Coronary Disease/*etiology/pathology/therapy ; Coronary Vessels/cytology/metabolism/microbiology ; Cytomegalovirus/*physiology ; Genes, p53 ; Humans ; Immediate-Early Proteins/*metabolism ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth, Vascular/cytology/metabolism/microbiology ; Recurrence ; Transcriptional Activation ; Transfection ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...