ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Cambridge University Press  (7)
  • 2010-2014  (5)
  • 2000-2004  (2)
Collection
  • Articles  (7)
Years
Year
  • 1
    Publication Date: 2003-09-10
    Description: We calculate the average swimming velocity and dispersion rate characterizing the transport of swimming gyrotactic micro-organisms suspended in homogeneous (simple) shear. These are requisite effective phenomenological coefficients for the macroscale continuum modelling of bioconvection and related collective-dynamics phenomena. The swimming cells are modelled as rigid axisymmetric dipolar particles subject to stochastic Brownian rotations. Calculations are effected via application of the generalized Taylor dispersion scheme. Attention is focused on finite (as opposed to weak) shear. Results indicate that the largest transverse average swimming velocities (essential to gyrotactic focusing) appear shortly after transition from the 'tumbling' mode of motion to cells swimming in the equilibrium direction. At sufficiently large shear rates, dispersivity is not monotonically decreasing with external-field intensity. Exceptional dispersion rates which are unique to non-spherical cells appear in the 'intermediate domain' of external fields. These are rationalized in terms of the corresponding deterministic problem (i.e. in the absence of diffusion) when cell rotary motion is governed by the simultaneous coexistence of multiple stable attractors.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-10
    Description: The effects of mass transfer (e.g. via evaporation) of surface-active solutes on the hydrodynamic stability of capillary liquid jets are studied. A linear temporal stability analysis is carried out yielding evolution equations for systems satisfying general nonlinear kinetic adsorption relations and accompanying surface constitutive equations. The discussion of the instability mechanism associated with the Marangoni effect clarifies that solute transfer into the jet is destabilizing whereas transfer in the opposite direction reduces instability. The general analysis is illustrated by a system satisfying Langmuir-type kinetic relations. Contrary to a clean system (i.e. in the absence of surfactants), reduced jet viscosity may lead to a substantial reduction in perturbation growth. Furthermore, the Marangoni effect gives rise to an overstability mechanism whereby perturbations whose dimensionless wavenumbers exceed unity grow with time through oscillations of increasing amplitude. The common diffusion-control approximation constitutes an upper bound which substantially overestimates the actual growth of perturbations. Considering solutes belonging to the homologous series of normal alcohols in water-air systems, the intermediate cases (e.g. hexanol-water-air which is 'mixed-control') are the most susceptible to Marangoni instability.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-16
    Description: Smoluchowski's celebrated electrophoresis formula is inapplicable to field-driven motion of drops and bubbles with mobile interfaces. We here analyse bubble electrophoresis in the thin-double-layer limit. To this end, we employ a systematic asymptotic procedure starting from the standard electrokinetic equations and a simple physicochemical interface model. This furnishes a coarse-grained macroscale description where the Debye-layer physics is embodied in effective boundary conditions. These conditions, in turn, represent a non-conventional driving mechanism for electrokinetic flows, where bulk concentration polarization, engendered by the interaction of the electric field and the Debye layer, results in a Marangoni-like shear stress. Remarkably, the electro-osmotic velocity jump at the macroscale level does not affect the electrophoretic velocity. Regular approximations are obtained in the respective cases of small zeta potentials, small ions, and weak applied fields. The nonlinear small-zeta-potential approximation rationalizes the paradoxical zero mobility predicted by the linearized scheme of Booth (J. Chem. Phys., vol. 19, 1951, pp. 1331-1336). For large (millimetre-size) bubbles the pertinent limit is actually that of strong fields. We have carried out a matched-asymptotic- expansion analysis of this singular limit, where salt polarization is confined to a narrow diffusive layer. This analysis establishes that the bubble velocity scales as the 2=3-power of the applied-field magnitude and yields its explicit functional dependence upon a specific combination of the zeta potential and the ionic drag coefficient. The latter is provided to within an O.1/ numerical pre-factor which, in turn, is calculated via the solution of a universal (parameter-free) nonlinear flow problem. It is demonstrated that, with increasing field magnitude, all numerical solutions of the macroscale model indeed collapse on the analytic approximation thus obtained. Existing measurements of clean-bubble electrophoresis agree neither with present theory nor with previous models; we discuss this ongoing discrepancy. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-19
    Description: Electrokinetic streaming-potential phenomena are driven by imposed relative motion between liquid electrolytes and charged solids. Owing to non-uniform convective 'surface' current within the Debye layer Ohmic currents from the electro-neutral bulk are required to ensure charge conservation thereby inducing a bulk electric field. This, in turn, results in electro-viscous drag enhancement. The appropriate modelling of these phenomena in the limit of thin Debye layers δ → 0 (δ denoting the dimensionless Debye thickness) has been a matter of ongoing controversy apparently settled by Cox's seminal analysis (J. Fluid Mech., vol. 338, 1997, p. 1). This analysis predicts electro-viscous forces that scale as δ4 resulting from the perturbation of the original Stokes flow with the Maxwell-stress contribution only appearing at higher orders. Using scaling analysis we clarify the distinction between the normalizations pertinent to field-and motion-driven electrokinetic phenomena, respectively. In the latter class we demonstrate that the product of the Hartmann & Péclet numbers is O(δ -2) contrary to Cox (1997) where both parameters are assumed O(1). We focus on the case where motion-induced fields are comparable to the thermal scale and accordingly present a singular-perturbation analysis for the limit where the Hartmann number is O(1) and the Péclet number is O(δ-2). Electric-current matching between the Debye layer and the electro-neutral bulk provides an inhomogeneous Neumann condition governing the electric field in the latter. This field, in turn, results in a velocity perturbation generated by a Smoluchowski-type slip condition. Owing to the dominant convection, the present analysis yields an asymptotic structure considerably simpler than that of Cox (1997): the electro-viscous effect now already appears at O(δ2) and is contributed by both Maxwell and viscous stresses. The present paradigm is illustrated for the prototypic problem of a sphere sedimenting in an unbounded fluid domain with the resulting drag correction differing from that calculated by Cox (1997). Independently of current matching, salt-flux matching between the Debye layer and the bulk domain needs also to be satisfied. This subtle point has apparently gone unnoticed in the literature, perhaps because it is trivially satisfied in field-driven problems. In the present limit this requirement seems incompatible with the uniform salt distribution in the convection-dominated bulk domain. This paradox is resolved by identifying the dual singularity associated with the limit δ → 0 in motion-driven problems resulting in a diffusive layer of O(δ2/3) thickness beyond the familiar O(δ)-wide Debye layer. © 2011 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-14
    Description: In Taylor's analysis of electrohydrodynamic drop deformation by a uniform electric field (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166) inertia is neglected at the outset, resulting in fluid velocities that scale as the square of the applied-field magnitude. For large (i.e. millimetric) drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. For simplicity, we focus upon the flow about a spherical gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. The transition occurs over a small deflection region about the equator where the flow is effectively inviscid. The deviation of the bubble shape from the original sphericity is quantified by the capillary number given by the ratio of a characteristic Maxwell stress to Laplace's pressure. At leading order the bubble deforms owing to: (i) the surface distribution of the Maxwell stress, associated with the familiar electric-field profile; (ii) the hydrodynamic boundary-layer pressure, engendered here by centrifugal forces; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing on the bubble scale as a concentrated load. Remarkably, the unique flow topology and associated scalings allow the obtaining of a closed-form expression for the deformation through the mere application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-03
    Description: Macroscale description of streaming-potential phenomena in the thin-double-layer limit, and in particular the associated electro-viscous forces, has been a matter of long-standing controversy. In part 1 of this work (Yariv, Schnitzer & Frankel, J. Fluid Mech., vol. 685, 2011, pp. 306-334) we identified that the product of the Hartmann and Péclet (Pe) numbers is O(δ -2)δ being the dimensionless Debye thickness. This scaling relationship defines a one-family class of limit processes appropriate to the consistent analysis of this singular problem. In that earlier contribution we focused on the generic problems associated with moderate and large Pe where the streaming-potential magnitude is comparable to the thermal voltage. Here we consider the companion generic limit of moderate Péclet numbers and large Hartmann numbers, deriving the appropriate macroscale model wherein the Debye-layer physics is represented by effective boundary conditions. Since the induced electric field is asymptotically smaller, calculation of these conditions requires higher asymptotic orders in analysing the Debye-scale transport. Nonetheless, the leading-order electro-viscous forces are of the same δ 2 relative magnitude as those previously obtained in the large-Pe limit. The structure of these forces is different, however, first because the small Maxwell stresses do not contribute at leading order, and second because salt polarization results in a dominant diffuso-osmotic slip. Since the salt distribution is governed by an advectiona-diffusion equation, this slip gives rise to electro-viscous forces which are nonlinear in the driving flow. The resulting scheme is illustrated by the calculation of the electro-viscous excess drag in the prototype problem of a translating sphere. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-02
    Description: We consider electrokinetic flows about a freely suspended liquid drop, deriving a macroscale description in the thin-double-layer limit where the ratio δ between Debye width and drop size is asymptotically small. In this description, the electrokinetic transport occurring within the diffuse part of the double layer (the 'Debye layer') is represented by effective boundary conditions governing the pertinent fields in the electro-neutral bulk, wherein the generally non-uniform distribution of ζ, the dimensionless zeta potential, is a priori unknown. We focus upon highly conducting drops. Since the tangential electric field vanishes at the drop surface, the viscous stress associated with Debye-scale shear, driven by Coulomb body forces, cannot be balanced locally by Maxwell stresses. The requirement of microscale stress continuity therefore brings about a unique velocity scaling, where the standard electrokinetic scale is amplified by a δ-1 factor. This reflects a transition from slip-driven electro-osmotic flows to shear-induced motion. The macroscale boundary conditions display distinct features reflecting this unique scaling. The effective shear-continuity condition introduces a Lippmann-type stress jump, appearing as a product of the local charge density and electric field. This term, representing the excess Debye-layer shear, follows here from a systematic coarse-graining procedure starting from the exact microscale description, rather than from thermodynamic considerations. The Neumann condition governing the bulk electric field is inhomogeneous, representing asymptotic matching with transverse ionic fluxes emanating from the Debye layer; these fluxes, in turn, are associated with non-uniform tangential 'surface' currents within this layer. Their appearance at leading order is a manifestation of dominant advection associated with the large velocity scale. For weak fields, the linearized macroscale equations admit an analytic solution, yielding a closed-form expression for the electrophoretic velocity. When scaled by Smoluchowski's speed, it reads δ-1 sinh(ζ̄/2)/ ζ̄/1 + 3/2μ + 2αsinh2(ζ̄/2)' wherein ζ̄, the 'drop zeta potential', is the uniform value of ζ in the absence of an applied field, μ the ratio of drop to electrolyte viscosities, and α the ionic drag coefficient. The difference from solid-particle electrophoresis is manifested in two key features: the δ-1 scaling, and the effect of ionic advection, as represented by the appearance of α. Remarkably, our result differs from the small-δ limit of the mobility expression predicted by the weak-field model of Ohshima, Healy & White (J. Chem. Soc. Faraday Trans. 2, vol. 80, 1984, pp. 1643-1667). This discrepancy is related to the dominance of advection on the bulk scale, even for weak fields, which feature cannot be captured by a linear theory. The order of the respective limits of thin double layers and weak applied fields is not interchangeable. ©2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...