ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (3)
  • Elsevier  (3)
  • American Physical Society
  • Springer Nature
  • 2010-2014  (3)
  • 2000-2004
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 1997 Umbria Marche is probably the best ever monitored normal faulting seismic sequence. Seismicity migration and multiple main shocks characterize the activation of a 40-km-long system of contiguous fault segments, as documented by seismological data. Many authors as indicative of fault weakening by fluids migration have interpreted this behaviour. In this study, we create a new catalogue of high quality P- and S-wave arrival times merging data recorded by permanent and temporary stations to improve the resolution of velocity and attenuation models and earthquake locations. We show that the relocated earthquakes and the joint interpretation of P- and S-wave velocity and attenuation models help in understanding the faulting processes, revealing new details of the geometry of the main faults and physical state of fluids within the crustal volume. We observe that large aftershocks occur on the top and within the Triassic evaporitic layer, a rock volume locally characterised by fluid over-pressured, as evidenced by high VP/VS and low QP/QS anomalies. Velocity and attenuation heterogeneities are evidence that the migration of fluid pressure along the fault system is the driving mechanism of the prolonged earthquake sequence.
    Description: Published
    Description: 73-84
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Velocity and Attenuation tomography ; Normal fault system ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We analyze the seismicity of a small sector of the Northern Apennines merging data from the Italian seismic bulletin with original data collected by temporary seismic networks. Our attention is focused on the region enclosed between the Apenninic watershed and the Adriatic Sea. This portion of belt is interested by the occurrence of diffuse crustal seismicity and small-to-moderate earthquakes. In this paper we study the five small sequences with mainshock having Mw 〈 4.7 that in the past 15 years hit the area. Our interest is addressed to better understand the relationship between these events and the regional seismotectonic setting in terms of seismicity distribution and stress field. Two regions with different behavior in the seismic release can be distinguished: (i) along the watershed where seismicity is clustered at shallow depths (〈 15 km) and where strong earthquakes occurred in the past, (ii) an eastern portion where the seismicity is distributed across all of the crustal volume, locally reaching depths down to 30 km. The focal mechanism of the seismic sequences shows mainly normal fault kinematics coherent with the regional stress field. Detailed stress field analysis suggests a rotation of the principal stress axis moving from the axial part of the chain toward the Adriatic Sea to the east.
    Description: Published
    Description: 136-144
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apennines ; Stress field ; Focal mechanisms ; Seismicity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The 1915 Fucino earthquake (Ms=6.9) was one of the largest and most destructive events in Italy during the last century. The epicentral area is centered in the Abruzzi region (Central Italy), where a long historical record of large earthquakes is available. Seismotectonic studies on this region, based on instrumental seismicity (focal mechanism solutions of major events and stress analysis of background seismicity), borehole break-out studies and several geological and paleoseismological investigations, suggest NE-SW oriented active extension. The 1915 earthquake fault produced detectable surface ruptures for about 20 km along NW-SE striking SW-dipping structures. Coseismic geodetic data recorded in the epicentral area have been inverted in the past (Amoruso et al. 1998 and references therein), indicating a source fault dipping at moderate angle toward SW and a normal focal mechanism, with a non-negligible left-lateral component. Three high precision leveling lines located in a wide sector north and east of the Fucino plain were measured in 1950 and 1997-2000 by the IGM (Istituto Geografico Militare). Two consecutive lines run in a NW-SE direction along the chain, and form a "T-shape" net together with a third line SW-NE striking, towards the Adriatic sea. The total length is about 360 km with a mean benchmark density higher than 0.5 bm/km. The relative elevation changes recorded during this time interval show maximum values between 7 and 12 cm with a signal wavelength of 40-70 km. The observed elevation changes stand significantly above the calculated total error of 1.13 mm sqrt(L) km. A sharp gradient has been observed east of the earthquake epicenter, where we observe peculiar elevation changes along a 40 km long section of the leveling line. The observed elevation changes in Fucino earthquake area seem to comprise both regional tectonic deformation and post-seismic relaxation. The former and the latter effects are expected to dominate along sections of the leveling lines which are respectively about perpendicular and parallel to the Apennines. Since we compare measurements performed in 1950 and 1997-2000, relaxation effects refer to a late stage of the process. We have used Pollitz (1997) code for computing gravitational-viscoelastic postseismic relaxation on a layered spherical Earth. Different Earth models, characterized by different thicknesses and viscosities of crustal layers and of the upper mantle, have been considered. Even if S/N ratio of expected post-seismic effects is not high, comparison between predictions and observations allows to constrain regional crustal structure. Best-fit seismic moment is in good agreement with Amoruso et al. (1998) and residuals are fully consistent with expected regional tectonic deformation in central Apennines.
    Description: Published
    Description: San Francisco, USA
    Description: open
    Keywords: postseismic ; 1915 Fucino earthquake ; levelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...