ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (40)
  • Wiley  (25)
  • Springer Nature  (14)
  • American Geophysical Union  (11)
  • Society of Exploration Geophysicists
  • 2010-2014  (66)
  • 2000-2004  (27)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-01-16
    Description: ABSTRACT Wave-induced fluid flow at microscopic and mesoscopic scales arguably constitutes the major cause of intrinsic seismic attenuation throughout the exploration seismic and sonic frequency ranges. The quantitative analysis of these phenomena is, however, complicated by the fact that the governing physical processes may be dependent. The reason for this is that the presence of microscopic heterogeneities, such as micro-cracks or broken grain contacts, causes the stiffness of the so-called modified dry frame to be complex-valued and frequency-dependent, which in turn may affect the viscoelastic behaviour in response to fluid flow at mesoscopic scales. In this work, we propose a simple but effective procedure to estimate the seismic attenuation and velocity dispersion behaviour associated with wave-induced fluid flow due to both microscopic and mesoscopic heterogeneities and discuss the results obtained for a range of pertinent scenarios.
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-27
    Description: [1]  This study presents aspects of the spatial and temporal variability of abyssal water masses in the Ionian Sea, as derived from recent temperature, salinity, dissolved oxygen and velocity observations and from comparisons between these and former observations. Previous studies showed how in the Southern Adriatic Sea the Adriatic Deep Water (AdDW) became fresher (ΔS ≈ −0.08) and colder (ΔT ≈ −0.1°C) after experiencing warming and salinification between 2003 and 2007. Our data, collected from October 2009 to July 2010 from two bottom moorings, one within the Strait of Otranto and the other in the northern Ionian, confirm this tendency: a bottom vein of southward-flowing AdDW, whose temperature and salinity continuously decreased during the observation time, was detected there. Typically, the vein travel time between the two stations ranged between 45 and 50 days. This gave us a temporal estimate for AdDW anomaly propagation towards the Ionian abyss from their Adriatic generation region. The density excess of the observed vein was always enough to enable its existence as a bottom-arrested current. This evidence confirms that, at that time (2009 and 2010), the Adriatic Sea was greatly contributing to the formation of Eastern Mediterranean Deep Water (EMDW), the bottom water of the Eastern Mediterranean. Hence, based on these results and on the evidence that, from 2003 to 2009, abyssal Ionian waters became saltier and warmer under the time-lagged influence of AdDW, possible future changes in the EMDW characteristics, as a response to Adriatic variability, are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-18
    Description: In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-18
    Description: ABSTRACT The transition from the late Pleistocene to the Holocene (30 000–5000 years ago) was a period of considerable climate variability, which has been associated with changes in deep water formation and the intensity of the Meridional Overturning Circulation. Although numerous records exist across the North Atlantic region, few Antarctic ice core records have been obtained from the south. Here we exploit the potential of upwelling ancient ice – so-called blue ice areas (BIAs) – from the Patriot Hills in the Ellsworth Mountains to derive the first deuterium isotope record (δD) from continental Antarctica south of the Weddell Sea. Gas analysis and glaciological considerations provide a first relative chronology. Inferred temperature trends from the Patriot Hills BIA and snow pit suggest changing climate influences during the transition between the last glacial period and Holocene. Under modern conditions, the interplay between the Antarctic high-pressure system and the Southern Annular Mode appears to play a significant role in controlling katabatic wind flow over the site while the BIA record suggests that greater sea ice extent during the last glacial period was a major control. Our results demonstrate the considerable potential of the Patriot Hills site for reconstructing past climate change in the south Atlantic region.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-29
    Description: In the context of the study of the integrated Sachs–Wolfe (ISW) effect, we construct a template of the projected density distribution up to redshift z ~= 0.7 by using the luminous galaxies (LGs) from the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). We use a photometric redshift catalogue trained with more than a hundred thousand galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS) in the SDSS DR8 imaging area covering nearly one-quarter of the sky. We consider two different LG samples whose selection matches that of SDSS-III/BOSS: the low-redshift sample (LOWZ, z [0.15, 0.5]) and the constant mass sample (CMASS, z [0.4, 0.7]). When building the galaxy angular density templates we use the information from star density, survey footprint, seeing conditions, sky emission, dust extinction and airmass to explore the impact of these artefacts on each of the two LG samples. In agreement with previous studies, we find that the CMASS sample is particularly sensitive to Galactic stars, which dominate the contribution to the auto-angular power spectrum below  = 7. Other potential systematics affect mostly the very low multipole range ( [2, 7]), but leave fluctuations on smaller scales practically unchanged. The resulting angular power spectra in the multipole range [2, 100] for the LOWZ, CMASS and LOWZ+CMASS samples are compatible with linear cold dark matter (CDM) expectations and constant bias values of b  = 1.98 ± 0.11, 2.08 ± 0.14 and 1.88 ± 0.11, respectively, with no traces of non-Gaussianity signatures, i.e. $f_{\rm NL}^{\rm local}=59\pm 75$ at 95 per cent confidence level for the full LOWZ+CMASS sample in the multipole range [4, 100]. After cross-correlating Wilkinson Microwave Anisotropy Probe 9-year data with the LOWZ+CMASS LG projected density field, the ISW signal is detected at the level of 1.62–1.69. While this result is in close agreement with theoretical expectations and predictions from realistic Monte Carlo simulations in the concordance CDM model, it cannot rule out by itself an Einstein–de Sitter scenario, and has a moderately low signal compared to previous studies conducted on subsets of this LG sample. We discuss possible reasons for this apparent discrepancy, and point to uncertainties in the galaxy survey systematics as most likely sources of confusion.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-20
    Description: SUMMARY Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas–water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas–water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se , should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-17
    Description: SUMMARY In this work, we analyse the role of permeability on the seismic response of sandstone reservoirs characterized by patchy gas–water saturation. We do this in the framework of Johnson’s model, which is a generalization of White’s seminal model allowing for patches of arbitrary geometry. We first assess the seismic attenuation and velocity dispersion characteristics in response to wave-induced fluid flow. To this end, we perform an exhaustive analysis of the sensitivity of attenuation and velocity dispersion of compressional body waves to permeability and explore the roles played by the Johnson parameters T and S / V , which characterize the shape and size of the gas–water patches. Our results indicate that, within the typical frequency range of exploration seismic data, this sensitivity may indeed be particularly strong for a variety of realistic and relevant scenarios. Next, we extend our analysis to the corresponding effects on surface-based reflection seismic data for two pertinent models of typical sandstone reservoirs. In the case of softer and more porous formations and in the presence of relatively low levels of gas saturation we observe that the effects of permeability on seismic reflection data are indeed significant. These prominent permeability effects prevail for normal-incidence and non-normal-incidence seismic data and for a very wide range of sizes and shapes of the gas–water patches. For harder and less porous reservoirs, the normal-incidence seismic responses exhibit little or no sensitivity to permeability, but the corresponding non-normal-incidence responses show a clear dependence on this parameter, again especially so for low gas saturations. The results of this study therefore suggest that, for a range of fairly common and realistic conditions, surface-based seismic reflection data are indeed remarkably sensitive to the permeability of gas reservoirs and thus have the potential of providing corresponding first-order constraints.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-09
    Description: The G 4 C 2 -repeat expansion in C9orf72 is a common cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 transcription is reduced in expansion carriers implicating haploinsufficiency as one of the disease mechanisms. Indeed, our recent ALS study revealed that the expansion was associated with hypermethylation of the CpG-island (5'of the repeat) in DNA samples obtained from different tissues (blood, brain and spinal cord). However, the link between FTLD and methylation of the CpG-island is unknown. Hence, we investigated the methylation profile of the same CpG-island by bisulfite sequencing of DNA obtained from blood of 34 FTLD expansion carriers, 166 FTLD non-carriers and 103 controls. Methylation level was significantly higher in FTLD expansion carriers than non-carriers ( P = 7.8E–13). Our results were confirmed by two methods (HhaI-assay and sequencing of cloned bisulfite PCR products). Hypermethylation occurred only in carriers of an allele with 〉50 repeats, and was not detected in non-carriers or individuals with an intermediate allele (22–43 repeats). As expected, the position/number of methylated CpGs was concordant between the sense and anti-sense DNA strand, suggesting that it is a stable epigenetic modification. Analysis of the combined ALS and FTLD datasets (82 expansion carriers) revealed that the degree of methylation of the entire CpG-island or contribution of specific CpGs ( n = 26) is similar in both syndromes, with a trend towards a higher proportion of ALS patients with a high methylation level ( P = 0.09). In conclusion, we demonstrated that hypermethylation of the CpG-island 5'of the G 4 C 2 -repeat is expansion-specific, but not syndrome-specific (ALS versus FTLD).
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-11
    Description: ABSTRACT The presence of fractures in fluid-saturated porous rocks is usually associated with strong seismic P-wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave-induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave-induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub-millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P-wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi-static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex-valued and frequency-dependent. By using laboratory measurements of stress-induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-29
    Description: Article Mutations in the enzyme superoxide dismutase 1 (SOD1) underlie a form of neurodegenerative disease called amyotrophic lateral sclerosis. Here the authors employ in-cell NMR to show that SOD1 mutants adopt unstructured conformations that are unable to bind zinc and may form toxic SOD1 aggregates. Nature Communications doi: 10.1038/ncomms6502 Authors: Enrico Luchinat, Letizia Barbieri, Jeffrey T. Rubino, Tatiana Kozyreva, Francesca Cantini, Lucia Banci
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...