ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: Ship tracks represent a natural laboratory to study the effects of aerosols on clouds. A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative radiative forcing at the surface and the top of the atmosphere. In some cases, cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, more recently compiled observations indicate that cloud water is instead reduced in daytime ship tracks on average. Such a response is consistent with cloud-burning due to solar absorption by soot (the semi-direct radiative forcing of aerosols), recently suggested to be suppressing trade cumulus cloud coverage over the Indian Ocean. We will summarize observational evidence and present large-eddy simulations that consider these competing mechanisms in the effects of aerosols on cloud albedo.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society Meeting/Conference; Nov 04, 2002 - Nov 07, 2002; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.
    Keywords: Meteorology and Climatology
    Type: European Geophysical Society XXVII General Assembly; Apr 20, 2002 - Apr 28, 2002; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is a measurement campaign designed to investigate tropical Cirrus cloud physical properties and formation processes. Understanding the production of upper tropospheric cirrus clouds is essential for the successful modeling of 'he Earth's climate. The deployment phase will occur in July, 2002 in southern Florida, USA. Several aircraft will be used, including the ER-2 and Proteus for cloud remote sensing, the WB-57 and Citation for in situ cloud measurements, the P-3 with a Doppler radar for characterization of convective systems, and the Twin otter for sampling of inflow airmasses. In addition, numerous ground-based and satellite remote sensing measurements will be contributing. A central focus of the mission is improvement of our ability to model cirrus clouds with numerical models. Several research groups with a variety of model types (cloud-resolving models, mesoscale models, weather-prediction models, and general circulation models) will be participating. Our hope is to fully characterize several mulonimbus/cirrus anvil systems that can be used as case studies for testing and improvement of the models. The models will be used for investigating cirrus generation and dissipation processes and the sensitivity of tropical cirrus to convective intensity and aerosol properties. Ultimately, we expect this effort to improve our ability to represent tropical cirrus in GCMs. A general description of the CRYSTAL-FACE program will be presented, with an emphasis on the cloud modeling approach.
    Keywords: Meteorology and Climatology
    Type: European Geophysical Society XXVII General Assembly; Apr 20, 2002 - Apr 28, 2002; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.
    Keywords: Meteorology and Climatology
    Type: European Geophysical Society Meeting; Mar 25, 2001 - Mar 30, 2001; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Some of the first evidence of a cloud absorption anomaly came from retrievals of cloud droplet size using measured multispectral cloud reflectance and in situ microphysical measurements. It was found that spectra computed from the measured droplet size or, equivalently, effective radius inverted from the reflectance measurements disagreed in such a way that suggested there was more absorption in cloud than predicted by theory. During the past decade new evidence of a cloud absorption anomaly has emerged from broadband solar flux measurements from above and below clouds. Based on these findings new field campaigns were devised to specifically address this problem. The most recent of these, the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment II (ARESEII), included measurements of upwelling and downwelling moderate resolution (10 nm) solar irradiance spectra from above and below cloud. During this talk we will briefly summarize the advantages and limitations of these spectrally resolved measurements compared to the more standard broadband flux. We will focus on cloudy atmosphere results from the ARESEII field study and compare them to theoretical spectra from three independent models.
    Keywords: Meteorology and Climatology
    Type: Chapman Conference on Atmospheric Absorption of Solar Radiation; Aug 12, 2001 - Aug 16, 2001; Estes Park, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Chapman Conference; Aug 13, 2001 - Aug 17, 2001; Estes Park, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union 2000 Fall Meeting; Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Corrections have recently been reported (Giver et al.) on the short-wave (visible and near-infrared) line intensities of water vapor that were catalogued in the spectroscopic database known as HITRAN. These updates have been posted on www.hitran.com, and are being used to reanalyze the polar stratospheric absorption in the 0.94 microns band as observed in POAM. We are currently investigating additional improvement in the 1.13 microns band using data obtained by us with an absorption path length of 1.107 km and 4 torr of water vapor and the ab initio line list of Partridge and Schwenke (needs ref). We are proposing the following four types of improvement of the HITRAN database in this region: 1) HITRAN has nearly 200 lines in this region without proper assignments of rotational quantum levels. Nearly all of them can now be assigned. 2) We have measured positions of the observable H2O-17 and H2O-18 lines. These lines in HITRAN currently have approximate positions based upon rather aged computations. 3) Some additional lines are observed and assigned which should be included in the database. 4) Corrections are necessary for the lower state energies E" for the HITRAN lines of the 121-010 "hot" band.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall 2000 Meeting; Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.
    Keywords: Meteorology and Climatology
    Type: 2000 AGU Spring Meeting; Jan 01, 2000; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...