ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The forest floor is a major reservoir of organic matter and nutrients for the ecosystem and as such it influences or regulates most of the functional processes occurring throughout the ecosystem. This study reports on the nutrient and organic matter content of the forest floor of the Hubbard Brook Experimental Forest during different seasons and attempts to correlate results from studies of vegetation, litter, decomposition, stemflow, throughfall, and soil. An organic matter budget is presented for an undisturbed watershed. Average weight of the forest floor on an undisturbed watershed ranged from 25,500 to 85,500 kg/ha. The weighted watershed average was 46,800 kg/ha. Although the F and H horizons did not vary significantly with time, the L horizon increased significantly during the period June to August largely as a result of a severe hail storm. The order of abundance of elements in the forest floor was Nτ;Ca≷Fe〉S〉P〉Mn〉K〉Mg〉Na〉Zn〉Cu. The concentrations of Ca, K, and Mn decreased with depth in the forest floor while N, P, S, Na, Fe, Zn, and Cu concentrations increased. N:P ratios were similar in decomposing leaf tissue, the forest floor, litterfall, and net stemflow plus throughfall suggesting a similar pattern of cycling. S was proportional to N and P in decomposing leaf tissue, the forest floor, and litterfall. Net stemflow and throughfall were affected by a relatively large input of SO4=-S from the atmosphere. Residence times for elements in the forest floor were affected by inputs other than litterfall (precipitation, stemflow, and throughfall). Calculation of residence times using all inputs caused smaller values than if litterfall alone was used. While all residence times were reduced, the major differences occurred for K, S, and Na. N and P showed relatively long residence times as a result of retranslocation and immobilization by decomposers. The slow turnover rate because of the strong demand and retention by all biota must account for the efficiency of the intrasystem cycling process for N and P. K showed the shortest residence time. A rapid and efficient uptake of K by vegetation seems to account for the efficient cycling of this element. The patterns of nutrient cycling are several depending on the chemical properties of the forest floor, and nutritional requirements of the biota.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 6 (1976), S. 423-433 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The acidity of precipitation in rural, forested areas of the northeastern United States is dominated by the strong mineral acids: H2SO4 and HN03. Weak acids have a negligible effect on the measured acidity (pH) of precipitation. These conclusions are based on total acidity titrations and detailed analysis of organic and inorganic components in precipitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 yr provide a measure of recent changes in precipitation inputs of H ion. The weighted average pH of precipitation during 1964–65 to 1973–74 was 4.14, with a minimum annual value of 4.03 in 1970–71 and a maximum annual value of 4.21 in 1973–74. The sum of all cations except H ion decreased from 51 μeq 1−1 in 1964–65 to 23 μeq 1−1 in 1973–74 providing a significant drop in neutralizing capacity during this period. Based upon regression analysis, the input in equivalents of H ion and nitrate increased by 1.4-fold and 2.3-fold respectively, from 1964–65 to 1973–74. Input of all other ions either decreased or showed no trend. Based upon a stoichiometric formation process in which a sea-salt, anionic component is subtracted from the total anions in precipitation, SO4 =, contribution to acidity dropped from 83% to 66%, whereas NO3 − increased from 15% to 30% during 1964–65 to 1973–74. The increased annual input of H ion at Hubbard Brook during the past 10 yr is highly correlated with the increased input of nitrate in precipitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 6 (1976), S. 241-258 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Precipitation is currently collected by several methods, including several different designs of collection apparatus. We are investigating these differing methods and designs to determine which gives the most representative sample of precipitation for the analysis of some 25 chemical parameters. The experimental site, located in Ithaca, New York, has 22 collectors of 10 different designs. The designs include bulk (wet and dry deposition collected together), wet only (only rain and snow) and wet/dry (collects wet and dry deposition separately). In every sampling period, which varies from 1 day to 1 mo, depending on the time variable being tested, the following chemical parameters are determined: conductivity, pH, Ca, Mg, Na, K, NH4, N03, Ntotal Si04, PO4, Ptotal, Cl, SO4, DOC, Zn, Cu, Mn, Fe, Al, Ni, Cd, Pb, Ag, DDT, DDE, Dieldrin and PCB's. The results of the investigation lead us to conclude that: (1) Precipitation samples must exclude dry deposition if accurate information on the chemical content of precipitation is required. (2) Substantial contamination results when glass and plastic collectors are used to sample precipitation for inorganic and organic components, respectively. (3) The inorganic components of precipitation samples of low pH (3.5 to 4.5), with the exception of P04 and Cl, exhibited no significant change in concentration when stored at 4\dgC for a period of 8 mo. We believe this is due to the stabilizing influence of a large concentration of H ions. (4) If quantitative information on the chemical composition is required, precipitation samples should be collected at no longer than weekly intervals if immediate collection is not possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-0629
    Keywords: Key words: organic nitrogen; marine-terrestrial; flux; nitrogen; upwelling; cloud deposition; Chile; cloud chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen (N) has been considered a limiting nutrient to many aquatic and terrestrial ecosystems. However, human activity has resulted in increased atmospheric N deposition worldwide such that N pollution is now altering ecosystem function in many locations. Research on atmospheric deposition has focused primarily on inorganic nitrogen (DIN; NH4 +-N + NO3 −-N) via rainwater and dry deposition as the main N input to ecosystems. Recently, organic N (ON) has been shown to be an important constituent in rainwater or dry deposition. Here we show that ON dominated (66%) total N in cloudwater from a remote site in southern Chile. Cloudwater from more human-impacted sites in northeastern USA had lower ON concentrations and DIN was dominant. We estimate that cloudwater delivers up to 2 kg ha−1 DIN and 9 kg ha−1 ON annually, compared to less than 1 kg ha−1 of DIN deposition via rainwater, thus it may contribute substantially to the N-economy of Chilean coastal forests. We also suggest that the adjacent ocean, where biologic productivity is high, may be a major source of N in Chilean cloudwater. This proposed marine-terrestrial flux via cloud deposition has not previously been identified and may be an example of the ocean feeding the forest. We suggest that this type of cross boundary flux may be common in other upwelling zones, such as along the west coasts of Africa, North and South America and east India, and warrants further substantiation and investigation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0629
    Keywords: Key words: biogeochemistry; calcium; carbon; forest ecology; Hubbard Brook; nitrogen; soil chemistry; soil solution; stream chemistry; weathering.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S, and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds. Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and 435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes, these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: C:N ratio ; dissolved organic carbon ; dissolved organic nitrogen ; nitrogen ; stream chemistry ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN− DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 7 (1977), S. 355-365 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Data collected since 1965 at a network of nine stations in the northeastern United States show that precipitation is most acid in the growing season (May-September) and least acid in winter (December-February). For the Hubbard Brook station in New Hampshire, where the mean hydrogen ion content of precipitation ranges between 46 peq 1−1 in winter and 102 peq 1−1 in summer, the seasonal pattern in acidity correlates closely with seasonal differences in S deposition from the atmosphere. As summer precipitation passes through the forest canopy, H ion concentrations are lowered by an average of 90%, primarily as a result of exchange with other cations. In winter the H ion content of incident precipitation is lowered from a mean of 50 peq 1−1 to a mean of 25 peq l−1 during storage in the snowpack.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-2932
    Keywords: acidic deposition ; acid rain ; NADP ; precipitation chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract From 1978 through 1989, a wet-onlyprecipitation collector operated for the NationalAtmospheric Deposition Program, an independantwet-only collector, and a bulk precipitation collectorwere co-located at the Hubbard Brook ExperimentalForest (HBEF) in central New Hampshire. A secondbulk precipitation collector was maintained at anotherlocation within the HBEF. There were statisticallysignificant differences between the chemistry fromco-located wet-only collections for Ca2+,K+, NH4 +, pH, and NO3 -. Thedifferences for K+ and pH though statisticallysignificant were very small but consistant. Thedifferences for Ca2+ were related to earlycontamination problems, and differences inNH4 + and NO3 - were related toepisotic events. Bulk precipitation was significantlyricher in K+ than wet-only precipitation. Therewere no differences for any ions between the bulkcollections at the two locations. While there wereminor differences, after 1981 when the contaminationproblems had been resolved, data from all collectorsat all locations adequately characterized theprecipitation chemistry of the site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-01
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...