ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction  (3)
  • AGU  (1)
  • EDP Sciences  (1)
  • Hindawi Publishing Corporation  (1)
  • 2010-2014  (3)
  • 2000-2004
  • 1995-1999
  • 1955-1959
  • 1950-1954
Collection
Publisher
Years
  • 2010-2014  (3)
  • 2000-2004
  • 1995-1999
  • 1955-1959
  • 1950-1954
Year
  • 1
    Publication Date: 2020-12-14
    Description: An unusual nighttime impulsive electron density enhancement was observed on 6 March 2010 over a wide region of South America, below the southern crest of the equatorial anomaly, under low solar activity and quiet geomagnetic conditions. The phenomenon was observed almost simultaneously by the F2 layer critical frequency ( foF2) recorded at three ionospheric stations which are widely distributed in space, namely Cachoeira Paulista (22.4°S, 44.6°W, magnetic latitude 13.4°S), São José dos Campos (23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, and Tucumán (26.9°S, 65.4°W, magnetic latitude 16.8°S), Argentina. Although in a more restricted region over Tucumán, the phenomenon was also observed by the total electron content (TEC) maps computed by usingmeasurements from 12 GPS receivers. The investigated phenomenon is very particular because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. This compression was clearly visible both by the virtual height of the base of the F region (h′F) recorded at the aforementioned ionospheric stations, and by both the vertical electron density profiles and the slab thickness computed over Tucumán. Consequently, neither an enhanced fountain effect nor plasma diffusion from the plasmasphere can be considered as the single cause of this unusual event. A thorough analysis of isoheight and isofrequency ionosonde plots suggest that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could have likely played a significant role in causing the phenomenon.
    Description: Published
    Description: A12314
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: equatorial ionosphere ; travelling ionospheric disturbance ; ionosphere-atmosphere interactions ; instrument and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Hindawi Publishing Corporation
    Publication Date: 2017-04-04
    Description: The selection of the topics included in this issue is far from being exhaustive, but it contributes to demonstrate how many questions arise from the investigation of the coupling between ionized and neutral atmosphere and from the solarterrestrial relationship. We would like to thank the authors for their excellent contributions and patience in assisting us. Finally, the fundamental work of all reviewers on these papers is also very warmly acknowledged.
    Description: Published
    Description: 1-2
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: N/A or not JCR
    Description: open
    Keywords: plasma dynamic ; solar-terrestrial interaction ; miscellanea ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches, which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented highresolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently. Cusp ionosphere scintillations also occur during IMF BZ north conditions, which further substantiates that particle precipitation can play a key role to initialize plasma structuring. Furthermore, the cusp is associated with flow channels and strong flow shears, and we have demonstrated that the Kelvin- Helmholtz instability process may be efficiently driven by reversed flow events.
    Description: Published
    Description: A02
    Description: JCR Journal
    Description: open
    Keywords: ionosphere ; polar cap ; instabilities ; irregularities ; cusp-cleft ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...