ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (23)
  • GEOPHYSICS  (12)
  • Acoustics  (11)
  • 2010-2014  (5)
  • 2000-2004  (4)
  • 1995-1999  (2)
  • 1990-1994  (12)
  • 1960-1964
  • 1
    Publication Date: 2011-08-24
    Description: Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-h interval in question, IMF Bz oscillates between +/- 7 nT with about a 1-h period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5 deg magnetic latitude, but separated by about 2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (about 10 MLT) and then spread outward toward dawn and dusk with a phase speed of about 5 km/s over the longitude range about 8 to 12 MLT, slowing to about 2 km/s outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,373-19,380.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-02
    Description: A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.
    Keywords: Acoustics
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.
    Keywords: Acoustics
    Type: NASA/TM-2000-209387 , E-11814 , AIAA Paper 99-1985 , NAS 1.15:209387 , Aerocoustics; May 10, 1999 - May 12, 1999; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Acoustic measurements from eight pre-Cassini Titan IV flights, and an acoustic test of a Cassini simulator and Titan payload fairing (PLF), were used to derive acoustic flight and test criteria for the Cassini spacecraft. The flight and ground test data were used or modified to account for the following factors: (a) noise-spike contamination of flight data, (b) spatial and flight-to-flight variations of flight data, (c) application of a thicker banier-blanket to the PLF for the Cassini mission, (d) effects of locating two Cassini assemblies, the Huygens Probe, and the High Gain Antenna (HGA), near the PLF, and (e) higher thrust of upgraded Titan solid rocket motors (SRMS) for the Cassini mission. An overall sound pressure level (OA SPL) of 145 dB was verified for the protoflight acoustic test criteria for the Cassini spacecraft. Cassini flight liftoff data showed an average OA SPL of 133 dB.
    Keywords: Acoustics
    Type: International Congress on Sound and Vibration; Jul 05, 1999 - Jul 08, 1999; Lyngby; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An advanced high bypass ratio fan model was tested in the NASA Lewis Research Center 9 x 15-Foot Low Speed Wind Tunnel. The primary focus of this test was to quantify the acoustic benefits and aerodynamic performance of sweep and lean in stator vane design. Three stator sets were used for this test series. A conventional radial stator was tested at two rotor-stator axial spacings. Additional stator sets incorporating sweep + lean, and sweep only were also tested. The hub axial location for the swept + lean, and sweep only stators corresponded to the location of the radial stator at the upstream rotor-stator spacing, while the tip axial location of these modified stators corresponded to the radial stator axial position at the downstream position. The acoustic results show significant reductions in both rotor-stator interaction noise and broadband noise beyond what could be achieved through increased axial spacing of the conventional, radial stator. Theoretical application of these results to acoustically quantify a fictitious 2-engine aircraft and flight path suggested that about 3 Effective Perceived Noise (EPN) dB could be achieved through incorporation of these modified stators. This reduction would represent a significant portion of the 6 EPNdB noise goal of the current NASA Advanced Subsonic Technology (AST) initiative relative to that of 1992 technology levels. A secondary result of this fan test was to demonstrate the ability of an acoustic barrier wall to block aft-radiated fan noise in the wind tunnel, thus revealing the acoustic structure of the residual inlet-radiated noise. This technology should prove valuable toward better understanding inlet liner design, or wherever it is desirable to eliminate aft-radiated noise from the fan acoustic signature.
    Keywords: Acoustics
    Type: NASA/TM-1998-208661 , NAS 1.15:208661 , AIAA Paper 99-0479 , E-11382 , Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A survey of Interplanetary Monitoring Platform (IMP 8) magnetometer data for plasmoid signatures during magnetospheric intervals from 1981 through 1983 found 16 plasmoids and 37 traveling compression regions as well as two earthward propagating flux ropes and 19 south-north bipolar lobe signatures. The properties of these relatively near-Earth plasmoids, traveling compression regions, and earthward propagating flux ropes and a qualitative model for their formation are presented. The plasmoids have estimated sizes, durations, magnetic field signatures, downtail velocities, and substorm associations very similar to those of the plasmoids identified in International Sun-Earth Explorer (ISEE) 3 deep-tail observations. The occurrence frequency of these near-Earth plasma sheet plasmoids is significantly smaller than that of plasmoids found in the mid- and deep tail with ISEE 3. The earthward propagating flux ropes are characterized by a south-north bipolar turning in the Geocentric Solar Magnetospheric (GSM) B(sub z) component, are localized near the noon-midnight meridional plane, and are strongly correlated with interplanetary magnetic field B(sub z) north and small isolated high latitude geomagnetic substorms. These events are also apparently very rare and/or spatially localized. We propose that these structures are 'proto-plasmoids,' i.e., plasmoids for which near-Earth magnetic reconnection stopped before all the closed plasma sheet field lines were reconnected. The proto-plasmoids are then 'trapped' inside closed magnetic field lines and propagate earthward owing to the effect of the distant X-line's earthward plasma flow. We suggest that the two different 'types' of plasmoids are due to the different energy states of the magnetosphere during periods of southward and northward interplanetary magnetic field.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 183-198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.
    Keywords: Acoustics
    Type: E-17701 , IMAC XXIX, Jan.31- Feb.3, 2011; Jan 31, 2011 - Feb 03, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
    Keywords: Acoustics
    Type: E-17660-1 , Aerospace Testing Seminar; Mar 29, 2011 - Mar 31, 2011; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
    Keywords: Acoustics
    Type: E-17433-1 , 29th International Modal Analysis Conference (IMAC); Jan 31, 2011 - Feb 03, 2011; Jacksonville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Acoustics
    Type: E-661223
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...