ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (803)
  • Lunar and Planetary Science and Exploration  (803)
  • ASTROPHYSICS
  • Analytical Chemistry and Spectroscopy
  • Life and Medical Sciences
  • 2010-2014  (467)
  • 2005-2009  (336)
Collection
  • Other Sources  (803)
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27937 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference (LPSC 2013); Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27938 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; TheWoodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet 103P/Hartley-2 using high dispersion infrared spectroscopy. We present production rates for individual volatiles species, their mixing ratios relative to water, and their spatial distributions in the coma on multiple dates that span the interval Sept. - Dec. 2010. The production rates vary strongly with nucleus rotation, but the mixing ratios remain constant throughout the campaign. The released primary volatiles exhibit diverse spatial properties which favor the presence of separate polar and apolar ice phases in the nucleus, establish dust and gas release from icy clumps (and also, directly from the nucleus), and provide insights into the driver for the cyanogen (CN) polar jet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.OVPR.4972.2011 , 43rd Annual DPS Meeting; Oct 02, 2011 - Oct 07, 2011; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; 208; 667-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN8969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: As part of our work [1] to develop techniques and procedures to create regional and eventually global THEMIS mosaics of Mars, we are developing algorithms and software to photogrammetrically control THEMIS IR line scanner camera images. We have found from comparison of a limited number of images to MOLA digital image models (DIMs) [2] that the a priori geometry information (i.e. SPICE [3]) for THEMIS images generally allows their relative positions to be specified at the several pixel level (e.g. approx.5 to 13 pixels). However a need for controlled solutions to improve this geometry to the sub-pixel level still exists. Only with such solutions can seamless mosaics be obtained and likely distortion from spacecraft motion during image collection removed at such levels. Past experience has shown clearly that such mosaics are in heavy demand by users for operational and scientific use, and that they are needed over large areas or globally (as opposed to being available only on a limited basis via labor intensive custom mapping projects). Uses include spacecraft navigation, landing site planning and mapping, registration of multiple data types and image sets, registration of multispectral images, registration of images with topographic information, recovery of thermal properties, change detection searches, etc.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 1; LPI-Contrib-1234-Pt-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: Lunar meteorite MET 01210 (hereafter referred to as MET) is a 22.8 g breccia collected during the 2001 field season in the Meteorite Hills, Antarctica. Although initially classified as an anorthositic breccia, MET is a regolith breccia composed predominantly of very-low-Ti (VLT) basaltic material. Four other brecciated lunar meteorites (NWA 773, QUE 94281, EET 87/96, Yamato 79/98) with a significant VLT basaltic component have been identified. We present here the petrography and bulk major element composition of MET and compare it to previously studied basaltic lunar meteorite breccias.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 22; LPI-Contrib-1234-Pt-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The NASA Planetary Science Summer School (PSSS) at JPL offers graduate students and young professionals a unique opportunity to learn about the mission design process. Program participants select and design a mission based on a recent NASA Science Mission Directorate Announcement of Opportunity (AO). Starting with the AO, in this case the 2009 New Frontiers AO, participants generate a set of science goals and develop a early mission concept to accomplish those goals within the constraints provided. As part of the 2010 NASA PSSS, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede. The science goals for this design focused on studying the icy moon's magnetosphere, internal structure, surface composition, geological processes, and atmosphere. By the completion of the summer school an instrument payload was selected and the necessary mission requirements were developed to deliver a spacecraft to Ganymede that would accomplish the defined science goals. This poster will discuss those science goals, the proposed spacecraft and the proposed mission design of this New Frontiers class Ganymede observer.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...