ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Cold Regions Science and Technology, ELSEVIER SCIENCE BV, 83-84, pp. 13-19, ISSN: 0165-232X
    Publication Date: 2020-08-03
    Description: Precise knowledge of the absolute value and frequency dependence of the dielectric permittivity of ice is the basis for interpretation of radio echo sounding data on glaciers and ice sheets. However, in the range of radio-frequencies, data from direct measurements of the permittivity are sparse, and partially lacking uncertainty estimates. Here, we present new results for artificial and natural ice samples obtained by means of frequency-dependent measurements from 10 MHz to 1.5 GHz with a coaxial transmission line cell. Measurements on eight artificial ice samples grown from ultra-pure water within the cell yield a mean value for the real part of the relative permittivity of 3.18 ± 0.01 at − 20 °C. Sole evidence for dispersion is detected for frequencies below 10 MHz, possibly attributed to the Debye-type relaxation behavior. Investigation of the crystal orientation of the artificial ice samples reveals the c-axes to be predominantly parallel to the electric field inside the cell and allows to calculate a value representative for isotropic crystal orientation of 3.16 ± 0.01. Measurements on acid-doped artificial ice show a linear dependence of the real part with acidity with a gradient of (21.1 ± 3.9) [1/M]. The real part of the relative permittivity of natural firn and ice samples from a high Alpine glacier range from 2.02 at a density of 0.515 g/cm3 to 3.08 at 0.875 g/cm3. Quasi-continuous measurements with the present setup on an alpine firn core are now possible, with resolution depending on the coaxial cell's length, for direct comparison with the established dielectric profiling method.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Cold Regions Science and Technology, ELSEVIER SCIENCE BV, 103, pp. 31-40, ISSN: 0165-232X
    Publication Date: 2014-05-06
    Description: Forecasting snow avalanche danger in mountainous regions is of major importance for the protection of infrastructure in avalanche run-out zones. Inexpensive measurement devices capable of measuring snow height and layer properties in avalanche starting zones may help to improve the quality of risk assessment. We present a low-cost L-band frequency modulated continuous wave radar system (FMCW) in upward-looking configuration. To monitor the snowpack evolution, the radar system was deployed in fall and subsequently was covered by snowfalls. During two winter seasons we recorded reflections from the overlying snowpack. The influence of reflection magnitude and phase to the measured frequency spectra, as well as the influence of signal processing were investigated. We present a method to extract the phase of the reflection coefficients from the phase response of the frequency spectra and their integration into the presentation of the measurement data. The phase information significantly improved the detectability of the temporal evolution of the snow surface reflection. We developed an automated and a semi-automated snow surface tracking algorithm. Results were compared with independently measured snow height from a laser snow-depth sensor and results derived from an upward-looking impulse radar system (upGPR). The semi-automated tracking used the phase information and had an accuracy of about 6 to 8 cm for dry-snow conditions, similar to the accuracy of the upGPR, compared to measurements from the laser snow-depth sensor. The percolation of water was observable in the radargrams. Results suggest that the upward-looking FMCW system may be a valuable alternative to conventional snow-depth sensors for locations, where fixed installations above ground are not feasible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Cold Regions Science and Technology, ELSEVIER SCIENCE BV, 82, pp. 56-67, ISSN: 0165-232X
    Publication Date: 2020-08-03
    Description: At radio-frequencies, measurements of the permittivity of ice are sparse and with unknown or large uncertainty. Coaxial transmission lines have been established for frequency-dependent permittivity determination for a broad variety of materials. Here we present a coaxial transmission line setup originally designed for soil samples, now adapted for measuring ice samples between 10 MHz and 1.5 GHz. Measured scattering parameters are assessed for artifacts against a forward calculation based on transmission line theory. A Debye-type relaxation function for the complex permittivity is assumed to obtain the permittivity of ice from the measured full set of four scattering parameters by means of a genetic optimization algorithm. The algorithm is successfully validated against quasi-analytical and iterative computation techniques with reference measurements of a low-loss Teflon standard. Based on the forward calculation and the Teflon standard, the total uncertainty for measuring the real part of the permittivity is estimated to be around 1%. Additional measurements of reference materials air, water, ethanol and methanol are used for validation. The real part of the permittivity of eight artificial pure ice samples is found frequency-independent between 10 MHz and 1.5 GHz at − 20 °C, with a mean value of 3.18 ± 0.01.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...