ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Time Factors  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • Wiley
  • 2010-2014  (1)
  • 2005-2009
  • 1980-1984  (1)
  • 1975-1979
  • 1970-1974
  • 1950-1954
Collection
Publisher
Years
  • 2010-2014  (1)
  • 2005-2009
  • 1980-1984  (1)
  • 1975-1979
  • 1970-1974
  • +
Year
  • 1
    Publication Date: 2012-04-14
    Description: Drug use and relapse involve learned associations between drug-associated environmental cues and drug effects. Extinction procedures in the clinic can suppress conditioned responses to drug cues, but the extinguished responses typically reemerge after exposure to the drug itself (reinstatement), the drug-associated environment (renewal), or the passage of time (spontaneous recovery). We describe a memory retrieval-extinction procedure that decreases conditioned drug effects and drug seeking in rat models of relapse, and drug craving in abstinent heroin addicts. In rats, daily retrieval of drug-associated memories 10 minutes or 1 hour but not 6 hours before extinction sessions attenuated drug-induced reinstatement, spontaneous recovery, and renewal of conditioned drug effects and drug seeking. In heroin addicts, retrieval of drug-associated memories 10 minutes before extinction sessions attenuated cue-induced heroin craving 1, 30, and 180 days later. The memory retrieval-extinction procedure is a promising nonpharmacological method for decreasing drug craving and relapse during abstinence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Yan-Xue -- Luo, Yi-Xiao -- Wu, Ping -- Shi, Hai-Shui -- Xue, Li-Fen -- Chen, Chen -- Zhu, Wei-Li -- Ding, Zeng-Bo -- Bao, Yan-ping -- Shi, Jie -- Epstein, David H -- Shaham, Yavin -- Lu, Lin -- Z99 DA999999/Intramural NIH HHS/ -- ZIA DA000434-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):241-5. doi: 10.1126/science.1215070.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute on Drug Dependence, Peking University, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499948" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/enzymology ; Animals ; Behavior, Addictive/*prevention & control ; Cocaine/administration & dosage ; Cocaine-Related Disorders/*psychology/therapy ; Conditioning, Classical ; Conditioning, Operant ; Cues ; *Extinction, Psychological ; Heroin/administration & dosage ; Heroin Dependence/*psychology/therapy ; Humans ; Male ; *Memory ; Mental Recall ; Models, Animal ; Prefrontal Cortex/enzymology ; Protein Kinase C/metabolism ; Rats ; Rats, Sprague-Dawley ; Recurrence ; Self Administration ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-03-28
    Description: Groups of three to four mice were gavaged with aqueous solutions of 2 milligrams of morpholine, after which they were exposed to nitrogen dioxide in inhalation chambers at concentrations of 0.2 to 50 parts per million for up to 4 hours. At sequential intervals during the exposure, mice were frozen and pulverized in liquid nitrogen, and the mice powder was extracted with ice-cold 35 percent aqueous methanol and dichloromethane; organic-phase concentrates were analyzed for N-nitrosomorpholine with a thermal energy analyzer interfaced to a gas chromatograph. The N-nitrosomorpholine yields, ranging up to about 2.3 micrograms per mouse, were time-dependent relative to the duration of exposure to nitrogen dioxide and dose-dependent relative to the concentrations of nitrogen dioxide; control levels (in mice that were gavaged with morpholine or distilled water and then exposed to air instead of nitrogen dioxide) were less than 5 nanograms per mouse. These preliminary studies demonstrate the in vivo nitrosating potential of nitrogen oxides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iqbal, Z M -- Dahl, K -- Epstein, S S -- New York, N.Y. -- Science. 1980 Mar 28;207(4438):1475-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7361099" target="_blank"〉PubMed〈/a〉
    Keywords: Amines/metabolism ; Animals ; Ascorbic Acid/pharmacology ; Biotransformation ; Dose-Response Relationship, Drug ; Mice ; Morpholines/*metabolism ; Nitrogen Dioxide/antagonists & inhibitors/*metabolism ; Nitrosamines/*metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...