ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (4)
  • Copernicus Publications on behalf of the European Geosciences Union  (2)
  • 2010-2014  (2)
  • 2005-2009  (1)
  • 1990-1994  (3)
  • 1980-1984
Collection
Years
  • 2010-2014  (2)
  • 2005-2009  (1)
  • 1990-1994  (3)
  • 1980-1984
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 39 (1994), S. 209-234 
    ISSN: 1573-5079
    Keywords: carbon biogeochemistry ; climate change ; carbon cycle ; atmospheric CO2 content
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rapid increase of atmospheric CO2 resulting from anthropogenic activites has stimulated a great deal of interest in the carbon cycle. Important decisions need to be made about future tolerable levels of atmospheric CO2 content, as well as the land and fossil fuel use strategies that will permit us to achieve these goals. The vast amount of new data on atmospheric CO2 content and ancillary properties that has become available during the last decade, and the development of models to interpret these data, have led to significant advances in our capacity to deal with such issues. However, a major continuing source of uncertainty is the role of photosynthesis in providing a sink for anthropogenic emissions. It is thus appropriate that a new evaluation of the status of our understanding of this issue should be made at this time. The aim of this paper is to provide a setting for the papers that follow by giving an overview of the role of carbon dioxide in climate, the biogeochemical processes that control its distribution, and the evolution of carbon dioxide through time from the origin of the earth to the present. We begin with a discussion of relevant processes. We then proceed to a more detailed discussion of the time periods that are best documented: the late Pleistocene (during which time large continental ice sheets waxed and waned) and the modern era of anthropogenic impact on the carbon cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 64 (1992), S. 405-421 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A 3-D global ocean model used previously to determine natural oceanic uptake of anthropogenic CO2 is used here to evaluate another proposed strategy for mitigation of rising atmospheric CO2. As a reference, this study bases itself on previous efforts with the same model to evaluate the potential of Fe fertilization as a means to enhance oceanic CO2 uptake. From that base, we test the feasibility of slowing the rise in atmospheric CO2 by enhancing growth of seaweed, a proposal resurrected from previous efforts considering it as a means to grow marine biomass as fuel for energy production. To determine its maximum potential, logistical and financial constraints are ignored. An enhanced growth of 1 GT C yr−1 is prescribed to be evenly distributed over a large ocean area such as the equatorial band from 18°S to 18°N and the northern and southern subtropics from 18° to 49° latitude. Results from these simulations clearly demonstrate that the CO2 invasion from the atmosphere is substantially less than C removed from the surface via enhanced growth. When enhanced growth is supported only by naturally available nutrients, the enhancement to the air to sea CO2 flux averages 0.2 GT C yr−1 for the first 100 yr. When nutrients are supplied artificially to support the enhanced growth, the mean enhanced air to sea flux is more (for the first 100 yr it averages 0.72 GT C yr−1 when all enhanced growth is harvested but only 0.44 GT C yr−1 without harvesting); however, generating enhanced marine growth at 1 GT C yr−1 requires an unreasonably large supply of nutrient—close to the world's current rate of fertilizer production for P and substantially more than that for N. Less nutrient is needed if the enhanced algal growth is not harvested and thus respired, but respiration increases demand for oxygen so that significant anoxia develops. We conclude that growth of macroalgae is an inefficient mechanism for sequestering anthropogenic CO2 and that the use of macroalgae as an additional fuel source will actually result in a net transfer of CO2 from ocean to atmosphere; however, there would be a reduction in the atmospheric CO2 increase rate if macroalgae were used as a partial replacement for fossil fuel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-08-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-13
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 621-640, doi:10.5194/bg-7-621-2010
    Description: Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years). Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.
    Description: S. A. H. was supported by NASA grants NNG06GE77G and NNX07AL81G. J. L. S. and C. B. acknowledge support from the Carbon Mitigation Initiative funded by BP Amoco. S. C. D. and I. L. were supported by NSF grant EF-0424599. L. B. acknowledges support from the ANR-GlobPhy and FP7-MEECE projects.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 2711-2724, doi:10.5194/bg-10-2711-2013.
    Description: Global climate change is expected to affect the ocean's biological productivity. The most comprehensive information available about the global distribution of contemporary ocean primary productivity is derived from satellite data. Large spatial patchiness and interannual to multidecadal variability in chlorophyll a concentration challenges efforts to distinguish a global, secular trend given satellite records which are limited in duration and continuity. The longest ocean color satellite record comes from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which failed in December 2010. The Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensors are beyond their originally planned operational lifetime. Successful retrieval of a quality signal from the current Visible Infrared Imager Radiometer Suite (VIIRS) instrument, or successful launch of the Ocean and Land Colour Instrument (OLCI) expected in 2014 will hopefully extend the ocean color time series and increase the potential for detecting trends in ocean productivity in the future. Alternatively, a potential discontinuity in the time series of ocean chlorophyll a, introduced by a change of instrument without overlap and opportunity for cross-calibration, would make trend detection even more challenging. In this paper, we demonstrate that there are a few regions with statistically significant trends over the ten years of SeaWiFS data, but at a global scale the trend is not large enough to be distinguished from noise. We quantify the degree to which red noise (autocorrelation) especially challenges trend detection in these observational time series. We further demonstrate how discontinuities in the time series at various points would affect our ability to detect trends in ocean chlorophyll a. We highlight the importance of maintaining continuous, climate-quality satellite data records for climate-change detection and attribution studies.
    Description: CB and JLS acknowledge financial support from the Carbon Mitigation Initiative with support from BP. JLS and RRR were partly supported by the NF-UBC Nereus Program. SAH was supported by NERC grant NE/G013055/1. SCD acknowledges support from NSF grant EF-0424599.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...