ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2017-03-01
    Print ISSN: 0935-4964
    Electronic ISSN: 1432-2250
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-29
    Description: We examine disturbances leading to optimal energy growth in a spatially developing, zero-pressure-gradient turbulent boundary layer. The slow development of the turbulent mean flow in the streamwise direction is modelled through a parabolized formulation to enable a spatial marching procedure. In the present framework, conventional spatial optimal disturbances arise naturally as the homogeneous solution to the linearized equations subject to a turbulent forcing at particular wavenumber combinations. A wave-like decomposition for the disturbance is considered to incorporate both conventional stationary modes as well as propagating modes formed by non-zero frequency/streamwise wavenumber and representative of convective structures naturally observed in wall turbulence. The optimal streamwise wavenumber, which varies with the spatial development of the turbulent mean flow, is computed locally via an auxiliary optimization constraint. The present approach can then be considered, in part, as an extension of the resolvent-based analyses for slowly developing flows. Optimization results reveal highly amplified disturbances for both stationary and propagating modes. Stationary modes identify peak amplification of structures residing near the centre of the logarithmic layer of the turbulent mean flow. Inner-scaled disturbances reminiscent of near wall streaks, and amplified over short streamwise distances, are identified in the computed streamwise energy spectra. In all cases, however, propagating modes surpass their stationary counterpart in both energy amplification and relative contribution to total fluctuation energy. We identify two classes of large-scale energetic modes associated with the logarithmic and wake layers of the turbulent mean flow. The outer-scaled wake modes agree well with the large-scale motions that populate the wake layer. For high Reynolds numbers, the log modes increasingly dominate the energy spectra with the predicted streamwise and wall-normal scales in agreement with superstructures observed in turbulent boundary layers. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper reports the wall-resolved large eddy simulations of shock-induced boundary layer separation over an axisymmetric bump for a flow Mach number of 0.875 and a chord-based Reynolds number of 2.763 million. The incoming boundary layer has a momentum-thickness Reynolds number of 6600 at one and a half chord lengths upstream of the leading edge. The calculations simulate the experiment by Bachalo and Johnson (AIAA Journal, Vol. 24, No. 3, 1986), except that the tunnel walls are ignored and the simulations are performed assuming free air with as many as 24 billion grid points. The effects of domain span, grid resolution and time step on the predictions are examined. The results are found to show some sensitivity to the studied parameters. Owing to the outer boundary conditions, the predicted surface pressure distribution as well as the flow separation and reattachment locations tend to agree better with the experimental results from the larger (6 6 ft) tunnel than those from the smaller (2 2 ft) tunnel. The predicted Reynolds shear stress profiles in the separated region differ by as much as 31%from the experimental results that were only obtained in the smaller tunnel. The most accurate surface pressure distribution obtained in this study lies within the scatter of the measurements taken in the two facilities.
    Keywords: Aerodynamics
    Type: NF1676L-27292 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.
    Keywords: Aerodynamics
    Type: NF1676L-24481 , AIAA SciTech Forum and Exposition 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...