ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LCMSMS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using noninvasive sampling of saliva and/or urine.
    Keywords: Aerospace Medicine; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-32690 , 2015 NASA Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: Historical studies performed by the JSC Pharmacotherapeutics Discipline suggest that exposure to spaceflight conditions may compromise the safety and efficacy of some medications. Follow-on studies have revealed that affected medications demonstrate reductions in active pharmaceutical ingredient (API) concentrations and altered release characteristics. It was hypothesized that the changes in API potency and release were from the medication's exposure to the harsh environmental conditions of spaceflight. Subsequent review of the spaceflight environmental control records from the time of these studies indicated that temperature and humidity levels aboard all spacecraft remained within United States Pharmacopeia (USP) recommended ranges to maintain optimal pharmaceutical stability. Therefore, space radiation was presumed to be the source of observed drug degradation. The Pharmacotherapeutics Discipline conducted a ground analog radiation experiment in 2006 at the NASA Space Radiation Laboratory (NSRL) at Brookhaven to validate this theory and to characterize the effects of high-energy radioactive particles on pharmaceutical stability. These data were never published. Recently, the Exploration Medical Capability (ExMC) Element finalized a research plan (RP) aimed at providing a safe and effective medication formulary for exploration spaceflight. As ExMC begins to design new flight and ground analog radiation studies, further analysis of the 2006 NSRL study data is essential for the characterization of the impact of radiation on medication potency and efficacy in the exploration spaceflight environment.
    Keywords: Space Radiation; Aerospace Medicine
    Type: JSC-CN-40553 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentrationtime profiles after administration of INSCOP.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33628 , 2015 AAPS Annual Meeting and Exposition; Oct 25, 2015 - Oct 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...