ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1)
Collection
Years
Year
  • 1
    Publication Date: 2017-03-03
    Description: For hydrocarbon exploration, large volumes of data are acquired and used in physical modeling-based workflows to identify geologic features of interest such as fault networks, salt bodies, or, in general, elements of petroleum systems. The adjoint modeling step, which transforms the data into the model space, and subsequent interpretation can be very expensive, both in terms of computing resources and domain-expert time. We propose and implement a unique approach that bypasses these demanding steps, directly assisting interpretation. We do this by training a deep neural network to learn a mapping relationship between the data space and the final output (particularly, spatial points indicating fault presence). The key to obtaining accurate predictions is the use of the Wasserstein loss function, which properly handles the structured output — in our case, by exploiting fault surface continuity. The promising results shown here for synthetic data demonstrate a new way of using seismic data and suggest more direct methods to identify key elements in the subsurface.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...